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Abstract

The recently imposed new gas market liberalization rules in Germany lead
to a change of business of gas network operators. While previously network
operator and gas vendor where united, they were forced to split up into in-
dependent companies. The network has to be open to any other gas trader
at the same conditions, and free network capacities have to be identified
and publicly offered in a non-discriminatory way. We show that these new
paradigms lead to new and challenging mathematical optimization problems.
In order to solve them and to provide meaningful results for practice, all
aspects of the underlying problems, such as combinatorics, stochasticity, un-
certainty, and nonlinearity, have to be addressed. With such special-tailored
solvers, free network capacities and topological network extensions can, for
instance, be determined.

1 Introduction

In the year 2005 a new era began for companies operating in the German natural
gas market. Back then a new Gas Network Access Regulation [7] was set in force.
Being part of the European efforts in creating common energy markets for gas and
electricity, the GasNZV describes the rules for a liberalized gas market in Germany.
The central new aspect is the establishment of market areas based on an entry-exit
system to ease network access and thus contribute to the realization of a competitive
gas market. The former system forced gas shippers to book an entire transportation
path through all the gas networks between the desired entry and exit points. This
system has hindered that gas supply contracts have been signed across several areas
in the past. With the new entry-exit system, capacity rights at entries and exits



within a (large) market area can be booked by gas shippers independently of each
other; they no longer need to care about the transportation path. It is the task
of the gas network operator to enable all gas transportation requests within the
limits of the booked entry and exit capacities. Moreover, the network operators
are obliged to calculate and publish the spare capacity on the entries and exits of
their networks so that gas shippers can book the offered capacities.

The new Gas Network Access Regulation brought a tremendous upheaval for
the gas companies, since the European Union also demands the unbundling of
the business unit operating the gas network from the remaining (usually vertically
integrated) gas company [I1]. These gas network operators are now companies
on their own and operate separated from the holding company on all operational
levels. Access to the gas network must be non-discriminatory, i.e., it has to be
offered at the same terms to the holding company and to other gas shippers. The
new entry-exit system and the monitoring of non-discriminatory network access by
the regulation authorities lead to several new and challenging planning problems
that have to be addressed for the first time. In fact, many of these emerging
problems have very difficult mathematical optimization problems at their core. In
this article we describe these problems from the network operator’s perspective
as well as from a mathematical point-of-view. We remark that there are further
mathematical problems related to the natural gas industry, for example, in the
production or the emergency management. For a broad survey of these problems
we refer to Zheng et al. [40].

In the broadest sense mathematical optimization deals with the numerical com-
putation of a proven optimum of a system that is described by a set of constraints
and an objective function. The constraints are given as mathematical algebraic or
differential equations over variables that describe, in our case, the physical prop-
erties of the gas, the technical properties of compressors, pipelines, or valves, or
certain contractual or regulative situations. The goal is to assign values to vari-
ables such that the constraints are fulfilled, i.e., a feasible solution is achieved.
Some variables can take values from a continuum, such as those for pressures and
flows. Other variables are only allowed to take discrete values in order to repre-
sent the state of compressors and valves, where a zero means “closed” and a one
means “open”. If several alternative feasible solutions exist then they are rated
by the objective function. The goal is now to find the best feasible solution with
respect to this rating. When formulating mathematical models for gas networks
one ends up with very large models: A network having a few hundred pipe seg-
ments and dozens of active network elements can easily lead to models having
several thousand variables and constraints. These models have discrete and con-
tinuous variables, stochastic and deterministic data, and linear as well as nonlinear,
nonconvex constraints. Identifying an optimal, or even any feasible solution is a
computationally difficult process. Although the progress in terms of faster com-
puter hardware and algorithms (or “solvers”) for standard optimization problems
over the last decades is tremendous (see Bixby [6]), all problems described in this
article cannot be solved by just taking commercial standard solvers on modern
computers. In fact, there does not even exist a solver for the problems we aim at.

Our scientific contribution is to identify the mathematical nature of the prob-



lems that are inherent in the laws and regulations, and that now govern the op-
erational business of gas network operators. We characterize the problems and
describe the difficulties when solving them using numerical standard solvers. Some
of the problems can be reformulated, so that they are within reach of these solvers.
Some solvers can be enhanced and specially tailored for our problem classes. Other
problems however remain challenging after all, so that they provide a basis for fu-
ture research.

Our work is supported by Open Grid Europe GmbH (OGE), which operates the
former E.ON / Ruhrgas network. OGE provided real-world problem data which
we used to develop models and algorithms.

The remainder of this article is organized as follows. In Section [2] we describe
the current usage of the gas network at the entry and exit side, discussing the
stochastic and uncertain behavior as well as the contractual situation. These in-
sights can be used to estimate future usage of the network. In Section 3] we describe
a mathematical model for the feasible states of a network with active and passive
elements, such as compressors, valves, and pipelines. The efficient numerical solu-
tion of this model is the cornerstone for all subsequent tasks. The perhaps most
elementary task is the validation of a nomination, that is, to decide if a given
entry-exit situation leads to a physically and technically valid flow of gas in the
network. We address this problem in Section [} Next in line is the verification of
booked capacities, which asks whether all entry-exit situations within the limits
of the booked capacity rights can technically be realized. This question, that is
closely related to the technical capacity of a network, is discussed in Section [5] If
the booked capacities have been verified, then one can ask how much more free
capacity the operator can offer to gas suppliers. We describe the mathematical
implications of this question in Section [6} If the capacity does not meet the de-
mand then it is necessary to enhance the network by building new facilities, such
as compressors or pipelines. We utilize our model to this end in Section [7]] An
outlook to further challenges, such as the merging of formerly independent market
regions, as well as conclusions, are given in Section [§

2 Gas Networks Usage and Utilization

Obviously, gas consumers want to buy gas as cheap as possible. Gas vendors, on
the other hand, want to reach as many consumers as possible. In an ideal market
both requirements could be easily fulfilled; however, the situation on the gas market
is more involved. The reason is that gas networks are, due to their high cost, a
natural monopoly. Therefore, each customer receives gas from a single or just a
few gas network operators, which in the past meant he had to buy gas via these
network operators.

To change this situation and to ultimately establish a competitive market as
mandated by the European Union [I1], German regulatory authorities established
an entry-exit system for gas network access: Ideally, capacity rights at entries and
exits within a so-called market area can be booked and used independently of each
other. The idea is that a gas consumer can satisfy his demand by buying gas
from any gas vendor and in particular does not need to know where the gas comes



from. The gas vendor, in turn, has to have sufficient capacity rights at the entry
he intends to use, but does not need to know where the gas is withdrawn.

Using a gas network for transporting gas is a two-step process. First, a gas
shipper needs to book capacity rights from the gas network operator that entitle
him to feed in and/or feed out gas at specified points (bookable entries or exits)
of the network subject to certain conditions. To use the capacity rights, a gas
shipper has to nominate the amount of gas he intends to transport, usually a day
before the actual transport takes place. Moreover, he has to ensure that the gas
flow is balanced, i.e., the gas fed into the network is also fed out within a given
time window. It is important that payment is for the capacity booked, not for the
capacity used.

A gas network operator may offer different capacity products. The most favor-
able type of capacity from a market point of view is the so-called freely allocable
capacity (FAC) at an entry or exit point. The amount of gas nominated on FAC
at an entry point may be balanced with any exit point within the same market
area, i.e., the network operator guarantees that the gas can be fed into the network
at the entry and the same amount of gas can be withdrawn at the exit. How-
ever, the network operator does not know about which entry nomination balances
which exit nomination. There is also restrictively allocable capacity (RAC), for
which the entry-exit combination of the gas flow is fixed. Moreover, there is firm
and interruptible capacity. For firm capacity, the network operator is obliged to
ensure that no matter how these capacities are actually used (i.e., how much is
nominated), the resulting gas flows can technically be realized in the gas network
under any condition. In contrast, the network operator may shorten the amount of
gas transported, if it has been nominated on interruptible capacity contracts and
this is necessary to operate the gas network under secure and safe conditions. Due
to technical limitations of the gas network, the FAC that can be guaranteed by
the network operator may be rather low at some entries or exits. In this case, the
network operator may offer RAC or interruptible FAC to its customers.

A TSO is legally obliged to compute the maximum (firm) FAC at each point
of his network and to offer this capacity to shippers. However, the flexibility of
FAC is a major source of uncertainty for a gas network operator, since gas demand
may be satisfied by any combination of entries. In general, it is not possible to
anticipate which entries will be used, since this depends, among other things, on
the gas price there. It is thus a delicate problem to check FAC availability and to
maximize the FAC that can be booked.

Depending on the actual gas network, a certain share of the gas demand at
exits may be modeled stochastically to some extent. Statistical data provided from
measuring stations on exits within the German pipeline network operated by OGE
gives a deeper insight into the stochastic properties and the behavior of the gas
outflow. Typical exits in gas transmission networks are public utilities, industrial
consumers and storages, as well as exits on borders and market crossings.

The dependence of gas loads on air temperature is observed usually in the case of
public utilities and sometimes for industrial consumers, as illustrated in Figure
Statistical modeling techniques are convenient to model temperature dependent
gas consumption, for details see Friedl et al. [I4]. These statistical models can be
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Figure 1: Example gas load of a public utility from 2004-01-01 to 2010-05-31.

applied to approximately 80 % of the exits in the network. For the remaining 20 %
of exits statistical data is either unavailable or unreliable, as is the case for, e.g.,
storages.

3 Mathematical Modeling of Gas Networks

From a mathematical perspective a gas transmission network can be represented as
a directed graph. The set of nodes consists of entries at which gas is supplied, exits
at which gas is discharged and intermediate nodes. Arcs, comprising active and
passive network elements, connect the nodes. Active elements such as compressor
stations and different types of valves can be controlled by the network operator.
Additional operational constraints restrict the interaction of these elements. In
contrast, from a modelling perspective, operators do not have any influence on
the behaviour of gas in passive network elements, namely pipelines, control valves
without remote access, and resistors.

The physical behaviour of gas within a network can be modeled on different
levels of detail. Common to all levels is that the flow of gas through network
elements is coupled with gas pressure at the corresponding nodes of the network.
Both, pressure and flow rates, are bounded by legal and technical constraints.

3.1 Nodes

Nodes are network elements without own capacity. Thus, a mass conservation (of
Kirchhoff type) has to be satisfied at every node: The difference of flows on in- and
outgoing arcs has to meet the nominated flow at the node.



3.2 Pipelines

Pipes are the most important components in gas transmission networks and typ-
ically outnumber all other network elements. They are often connected in series,
forming pipelines that are used to transport gas over large distances. The gas flow
through pipes is governed by the Euler equations for cylindrical pipes (see Feistauer
[12] or Lurie [23]). Since we focus on gas network planning questions this system of
partial differential equations is simplified by neglecting all transient effects yielding
a system of ordinary differential equations (ODEs). This ODE system consists of
the continuity and momentum equation. It is completed by an equation of state
and a model for the real gas factor representing the deviation of ideal and real gas
(see Modisette [25]).

The principal physical effect in pipes is the pressure loss due to friction at the
rough inner pipe walls for turbulent flows. This effect mainly depends on the flow
rate and the technical parameters of the pipe, e.g., its diameter, roughness, length
and slope. If the gas temperature is considered as a dynamic variable, the pressure
loss is additionally coupled by heat exchange effects with the surrounding soil. In
this case, the ODE system is extended by the stationary energy equation modeling
the addressed phenomena.

While the ODE system is a highly precise description of gas dynamics in pipes,
it is not suitable for mathematical optimization. In the following sections approxi-
mations of ODE solutions (e.g., the Weymouth equation [39]) or discretizations of
the ODE system will be used to model gas dynamics in pipes (see Section .

3.3 Resistors

Resistors are ficticious network elements for modeling pressure and temperature
loss effects at obstacles, such as measuring and filter systems or complex piping
facilities in compressor or control valve stations. There are no exact physical equa-
tions known for modeling gas dynamics for these obstacles. Thus, the pressure loss
is approximatively modeled by a constant pressure decrease or, if more knowledge
about the obstacle is given, by a pressure loss equation of Darcy—Weisbach type
(see Lurie [23] or Finnemore and Franzini [13]).

3.4 Different Valve Types

Standard wvalves are active elements with two states: open or closed. If a valve is
open, the pressure values at the end nodes coincide and arbitrary flow rates are
allowed within some technical bounds. If a valve is closed, no gas can pass the
valve and the pressures are decoupled.

A control valve is an extension of a valve. The open state is subdivided into
an active and a bypass mode. If active, control valves can reduce the pressure
within given technical bounds. A bypass mode leads the gas flow through a bypass
inducing equal up- and downstream pressures. In consequence a control valve is
either active, in bypass or closed.

A special subset of control valves are those without remote access. While the
downstream pressure of general control valves can be controlled directly, these el-



ements try to reduce the downstream pressure to a given threshold. When the
upstream pressure drops below the threshold value, the control valve without re-
mote access opens fully and thus is in bypass. If the downstream pressure rises
above the threshold, the control valve without remote access closes automatically.
As a result it is active, when the upstream pressure is above the threshold and the
downstream pressure can be reduced to this value.

Both control valves with and without remote access have a fixed working di-
rection. If the gas passes these units from the opposite direction, they have to be
either closed or in bypass.

3.5 Compressor Stations

Compressor stations are used to increase gas pressure, which is necessary to trans-
port gas over large distances. They are the most complex parts of gas transmission
networks featuring both combinatorial switching of discrete states and highly non-
linear and nonconvex continuous machine models.

A compressor station consists of a set of compressor machines and drives which
supply the compressors with power required for compression. For compressor ma-
chines we distinguish between turbo and piston compressors. Drives belong to
one of several types of gas turbines, gas driven motors, electric motors and steam
turbines. Both compressors and drives are specified by so-called characteristic di-
agrams determining the feasible operating range of the machines. For instance,
Figure [2] shows an operating range of a turbo compressor defining the feasible
combinations of up- and downstream pressure and flow.

Apart from these highly nonlinear machine models, different operation modes
of the entire compressor station have to be handled. On the lowest level, each com-
pressor may be active, bypassed, or closed. Several compressors might be used in
parallel or in series, depending on the gas flow situation. Since compressor stations
are often located at the intersection of several pipelines, gas may be transfered
with or without compression from one pipeline to another. In the network model,
a compressor station corresponds to a well-defined subnetwork consisting of com-
pressors, short pipes without any pressure drop, and valves. The topology of the
subnetwork is such that all operation modes can be realized by appropriate settings
of the valves in this subnetwork. The set of feasible valve setting corresponding to
the operation modes needs to be provided in addition to the network.

4 Validation of Nominations

A nomination is a vector giving the in- and outflow of gas at entry and exit nodes.
While in reality supply and demand are not necessarily equal and can be com-
pensated by a buffering network and gas market mechanisms, from our stationary
point of view these time-dependent effects cannot be respected. Thus, the nomi-
nation vector is assumed to be balanced. In addition, a nomination implies certain
technical and contractual bounds on the pressures on the entry and exit nodes.
Furthermore, the supplied gas parameters, e.g., calorific values and other chemical
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Figure 2: Operating range of a turbo compressor. The solid lines are the isolines
for compressor speed and the dashed lines are the isolines for efficiency. Both sets
of curves are chosen to fit the given measurements of the machine (+). The feasible
operating range is defined by the maximum (top) and minimum (bottom) speed
isolines and the leftmost and rightmost lines, i.e., the surge- and chokeline.

parameters like molar mass or gas density under normal conditions, are fixed at
entry nodes.

The task of the validation of a nomination is to decide whether the gas network
can be operated to fulfill the transportation request specified by the nomination,
obeying technical and contractual limitations. This problem is frequently faced by
gas network operators and is a major ingredient at all planning levels, operational
but also strategical planning. To solve this problem in a constructive way, one
has to compute controls for active network elements leading to physically and
technically feasible values for gas pressures and flows. If a nomination can not be
validated, a proof of infeasibility is desirable.

Translated to the language of mathematical optimization, the validation prob-
lem is a nonlinear, non-conver and non-smooth, mized-integer feasibility problem.
Directly solving this model for realistic, large-scale networks in full level of physical
and technical detail is computationally intractable.

4.1 Current Solution Approaches of Gas Network Operators

Simulation is still the method of choice for many gas network planners. At this,
all degrees of freedom are eliminated by fixing parameters and decisions, and the
resulting system of nonlinear equations is then solved, e.g., by Newton-like meth-
ods. The main drawback of this approach is that the settings of the active network
devices, in particular those who can not be controlled continously but are switched,
have to be set manually by the network planners. Despite their experience, this



is a highly time consuming work. There are a few tools available to automati-
cally generate feasible solutions using heuristic methods to make educated guesses
about the discrete decisions. Both simulation and the heuristic approaches have
the drawback that they are not able to prove infeasibility.

4.2 From Power Contracts to Flow Problems

In practice, capacity contracts between gas network operators and gas shippers are
stated in terms of power (kW). The network operator guarantees that the customer
can supply or discharge gas with a certain limited amount of power. However, gas
dynamics and the behaviour of technical elements are given in terms of (mass) flow
(kgs™!). Since our model approaches have flow as their main variable, we transform
a nomination stated in power into a nomination stated in flow. The transformation
cannot be done exactly before solving the validation problem, i.e., before knowing
the complete flow situation of the solution of the validation problem. Thus, we
apply approximation techniques and assume a flow-based nomination to be given
in the following.

4.3 A Two-Stage Approach for the Validation of a Nomina-
tion

To validate a nomination, we follow a two stage approach. First the complexity
of gas physics and engineering are reduced while taking all discrete decisions into
account. As a result, the first stage gives reasonable discrete controls of the active
network elements together with a feasible state of continuous gas quantities like
pressures and flows with respect to a simplified model.

Several solution approaches are applied to solve the first stage problem, see
Section (.41

If one of the first stage approaches is successful, all determined discrete decisions
are fixed and a purely continuous but highly accurate nonlinear program (NLP)
is solved. This refines the coarse first stage solution so that feasibility of the
nomination can be decided with respect to both discrete decisions and detailed gas
dynamics and engineering models.

Due to the reduced complexity in each stage, both can be solved within reason-
able runtimes.

4.4 Approaches to the First Stage

There exist various possibilities for obtaining a simplified first stage model, each
with its specific benefits and drawbacks. We actually run four different approaches
in parallel to obtain their combined benefits. These approaches, referred to as
MILP, Spatial Branching (SB), RedNLP and MPEC, are briefly described in the
following section. All approaches differ in terms of physical accuracy and in the
techniques of handling the discrete model aspects. Since MILP and SB are based on
branch-and-bound techniques, they are computationally expensive but are capable



of proving infeasibility of a given nomination. RedNLP and MPEC are heuristics
that are faster but cannot give provable statements on the given instance.

The MILP Approach The MILP approach (mized integer linear program) is
based on an algebraic isothermal stationary MINLP model (mized integer nonlinear
program) for gas flow. We build relaxations of the feasible set of the MINLP in
terms of mixed-integer linear constraints only.

To this end we first construct a piecewise linear interpolation of each nonlinear
expression such that the resulting approximation satisfies an a-priori given error
bound. This is achieved by a new adaptive approximation algorithm based on
convex underestimators (see Geissler et al. [I5] [16]). In a second step we extend
the so-called incremental method for piecewise linear functions to a MILP model
for piecewise polyhedral outer approximations of the same tightness as the initially
constructed approximation. Thus, the resulting MILP model is a proper relaxation
of the underlying MINLP that incorporates all combinatorial constraints exactly
and reflects any nonlinear constraint up to a predefined error bound.

In the MILP model characteristic diagrams of compressors are incorporated
in terms of convex relaxations of their feasible ranges. In addition we apply an
objective function that minimizes the infinity norm distance to the centroids of
the characteristic diagrams of all active compressors in order to obtain a feasible
control.

To solve the MILP relaxations any general purpose MILP solver can be chosen
and in cases where the infeasibility of the MILP model is proven we also have an
infeasibility proof for the underlying MINLP, due to the relaxation property.

The SB Approach The SB approach models the first stage problem as a non-
convex mixed-integer constrained program which is solved by branch-and-bound.

The basis of the approach is the application of outer approximation techniques
in combination with spatial branching. All nonlinear, non-convex equations are
relaxed by a linear outer approximation which is refined by cutting planes. If cut-
ting planes do not suffice to cut off points that are feasible in the relaxation but do
not fulfill the equation, we branch on continuous variables to further improve the
approximation of the nonlinear equation. This is referred to as spatial branching.
The branch-and-bound algorithm is continued until a solution is found or infeasi-
bility is proven. For more details we refer to Belotti et al. [2], Tawarmalani and
Sahinidis [34] [35] [36], Smith and Pantelides [32], or Vigerske [37].

While this is the standard procedure for this kind of problem (see, for example,
Berthold et al. [5]), we use the structure of the problem to improve the algorithm.
If all integer variables take integer values, the remaining problem can be formulated
as a convex program which can be solved to global optimality in reasonable running
times. This is done whenever the relaxation is integral. If all integer variables are
actually fixed, the solution of the convex problem suffices to prove feasibility or
infeasiblity of the node and infeasible nodes can be pruned without any further
spatial branching.

10



The RedNLP Approach The RedNLP approach (reduced nonlinear program)
relies on transforming the model’s nonlinearities into a more accessible form and to
embed treatment of these transformed models into a heuristic procedure for finding
promising switching decisions.

The system of (linear) flow conservation and (nonlinear) pressure drop equations
is transformed into an equivalent nonlinear system where most flow and pressure
variables get eliminated because they are explicit functions of a relatively small
group of variables. This group consists of one flow variable per network cycle and
one pressure variable at each node that is incident to an active element. Apart
from the explicit formulas for flow and pressure variables the transformed system
contains implicit equations whose number coincides with the number of funda-
mental cycles of the network and whose unknowns are just the variables from the
mentioned group.

The idea behind this transformation dates back to at least the work of Hamam
and Brameller [I8] and has been picked up repeatedly later on by Mallinson and
Fincham [24] and Rios-Mercado et al. [28]. Compared to this work, the approach
taken here incorporates not only compressors, but also control valves and resistors.
Moreover, it can handle substantially meshed gas distribution networks. It aims at
checking feasibility for a set of switching states of active elements, either predefined
or resulting from a transshipment heuristic. Any NLP solver can be used.

The MPEC Approach The MPEC heuristic (mathematical program with equi-
librium constraints) handles the validation problem as a non-smooth MINLP and
applies several techniques for transforming it into an NLP. Discrete controls of ac-
tive network devices are modeled by complementarity constraints and non-smooth
aspects are smoothed using both standard and model-specific smoothing techniques
(see Schmidt [29] and Schmidt et al. [3I]). This leads to an MPEC formulation.
Due to a lack of model regularity, solving MPECs is a challenging task. Vari-
ous model-specific regularization strategies are applied to address this difficulty.
Finally, the resulting reformulation can be solved with standard NLP solvers.

As it is often the case, regularization and smoothing lead to numerically hard
NLP formulations. To handle these difficulties, we split up the NLP solution pro-
cess into two stages. The first stage deals with basic discrete controls of active
network elements modeled by complementarity constraints. The subsequent stage
fixes these decisions and attempts to find reasonable choices of compressor station
configurations by a convezification of the set of all possible configurations.

4.5 The Second Stage: NLP Validation

As described above, all approaches for solving the first stage simplify the full prob-
lem of nomination validation. For this reason, we validate the solutions produced
by the first stage approaches by a highly detailed nonlinear feasibility problem (see
Schmidt et al. [30] for a detailed description of the model). The given solutions
are used to fix the discrete controls of active devices and to initialize the nonlinear
problem, which is finally solved by standard nonlinear optimization software.

11



4.6 Computational Results

We perform computational experiments on large-scale, real-world instances from
our industrial partner OGE. The considered network is the northern part of their
high-calorific gas network. It contains 452 pipes a total length of 1241 km, 9 resis-
tors, 35 valves, 23 control valves and 6 compressor stations. A schematic plot is
given in Figure[3] Up to our knowledge this is the first time that mathematical pro-
gramming techniques have been successfully applied to gas network optimization
problems of this size.

All experiments were conducted under Linux on a cluster where each node was
equipped with two 3.2 GHz Intel Xeon X5672 quad-core CPUs and 48 GB RAM.
Only one job at the time was submitted to each cluster node. A time limit of 2 hours
was given. We use several commercial and open-source software packages to solve
our models. Gurobi 5.0 [I7] was used to solve the MILP problems constructed using
the MILP approach. The SB approach is implemented in a prerelease version of the
branch-and-cut solver SCIP 3.0 [I]. LP and NLP subproblems therein were solved
using CPLEX 12.4 [20] and TPOPT 3.10 [38], respectively. Ipopt 3.10 was also
used to solve the NLP problems in the RedNLP and the MPEC approach. Since
the validation NLP can be tackled by several NLP solvers, we sequentially tried
the solvers Ipopt 3.10, CONOPT 3.15C, CONOPT 4.00 [I0], and KNITRO 8.0.0
[8] until one of them converge to a feasible point.

The four individual approaches were combined into a single nomination valida-
tion solver. On a parallel cluster they all solved the same instance of the problem
simultaneously. If one of the four solvers is able to find a feasible solution, and this
solution passes the NLP validation step, then this solution is returned to the user.
In case one solver reports a feasible solution, and another solver proves infeasibility,
the user will still obtain the solution, but together with warning that other solvers
do not agree.

Based on statistical observations and the contractual situations at different
points in time, we generated 4227 nominations (test set SN4). Our joint approach
was able to solve 4157 (or more than 98%), that is, it either finds a feasible solution
or it proves that the instances is infeasible. On 38 of the remaining 70 instances,
the solvers came up with contradiction solutions, and on the final 32 instances no
definitive result was produced, that means, all solvers neither found a solution nor
proved infeasibility. The running times range from a few to 7200 seconds (i.e.,
reaching the time limit), taking 93 seconds on average and less than 21 seconds on
half of the instances.

For more details, in particular on the individual behavior of the four solvers,
we refer to our technical report [26].

5 Verifying Booked Capacities

As discussed in Section [2] regulatory authorities demand that a gas network op-
erator offers as much capacity as possible as firm freely allocable capacity (FAC).
However, the gas network operator may only offer firm capacity to the extent that
all “likely and realistic” nominations within the booked capacities can technically be
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realized [7]. Gas network operators thus need a method to verify this realizability
requirement.

We call a set of capacity products (e.g., firm FAC or RAC contracts) a booking.
A nomination complies to this booking or is booking-compliant, if the nominated
gas flows are in line with the rules of the capacity products. Most importantly, the
flows at an entry or exit may not exceed the total booked capacity of this point.

The problem of verifying a booking may be viewed as a 2-stage 2-player game
where the players are the gas network operator and a single customer representing
all real customers who want to ship gas. In the first stage, the customer nominates
a booking-compliant gas flow. The second stage allows the gas network operator
to switch the components of the gas network in order to realize this gas flow. The
network operator wins this game if and only if the gas flow can be realized, which
means that the booking is valid. This type of problem has been discussed under
different names in the literature. For instance, it is an example of an adjustable
robustness feasibility problem (cf. Ben-Tal et al. [3]). It can also be readily
expressed as a quantified feasibility problem, which is a special case of quantified
optimization problems, see Subramani [33], Benedetti et al. [4], or Lorenz et al.
[22]. “Quantified” in this context means that the problem formulation involves a
sequence of logical quantifiers. Verification of a booking is a quantified version of
the nomination validation problem: For every booking-compliant nomination there
1s a realizing setting of the active devices.

Requiring technical realizability for every booking-compliant nomination, no
matter how unlikely, allows to offer only small capacities, since it is often easily
possible to construct bad adversarial booking-compliant nominations. Moreover,
it is also stricter than required legally. In practice, it is much more realistic to re-
quire that only a certain percentage (e.g., 95 %) of booking-compliant nominations
needs to be technically realizable. To do this, one needs a stochastic model for
the nominations. As discussed in Section [2] a stochastic model is appropriate only
for a subset of the points, which we refer to as statistical points. The stochastic
model defines a random vector providing the load at every statistical point. We call
this random vector the random load vector and a realization of it a statistical load
scenario. In the stochastic version of the problem, we require that with probabil-
ity a, all booking-compliant nominations that extend a statistical load scenario are
technically feasible. This formulation thus requires to determine the probability of
an event described as a quantified feasibility problem.

The current industry standard to verify a booking is to check that a relatively
small set of testing nominations is technically realizable. These testing nominations
are chosen such that they are considered both challenging for the network but
still realistic. To construct the testing nominations, one uses a combination of
statistical information extracted from historical observations and knowledge about
the structure and capabilities of the network. To check technical realizability,
simulation and/or optimization tools are employed. However, in contrast to the
method outlined in Section [d none of the methods used is in principle able to
reliably detect infeasibility.

Adjustable robust or quantified problem versions are usually much harder than
their nominal problems and nomination validation is already a very hard problem.
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Thus the development of an exact method for verifying a booking that is applicable
to industrial-size networks is well beyond the reach of the current state-of-the-art.
However, one can resort to an approximate approach that is similar to the one cur-
rently used in industry: In a first step, one generates a set of testing nominations,
which are in the second step validated by a nomination validation method. The
main reason for considering only few nominations is that it is labor-intensive to val-
idate them manually. Once there is an effective automatic method for nomination
validation (as the one presented in Section [4), there is no reason to stick to tenths
of nominations. Depending on the running time for a single nomination validation,
it may be feasible to test several thousands of nominations, thus increasing the
confidence in the result of the booking verification significantly.

As in the existing method, we use stochastic models for the offtakes of the
large part of the exits for which reliable statistical data is available and which are
expected to behave in the future as they did in the past. We develop automatic
methods that determine appropriate stochastic models and estimate their param-
eters from historical data. If statistically sound data is available, we model the
joint behaviour of correlated exits by multivariate normal distributions. Other-
wise, we use univariate normal and uniform distributions which may be shifted,
i.e., there may be a positive probability that the offtake is exactly zero. In order to
account for the dependence of the offtakes on the air temperature, these models are
determined for several temperature classes separately. The temperature interval
defining a temperature class is sufficiently small to treat the temperature as con-
stant, thus removing the temperature dependency. The stochastic model is then
used to generate statistical load scenarios, i.e., a joint set of loads on the statistical
points, as described by Koch et al. [2I]. These statistical load scenarios represent
likely usage patterns for the network and thus capture the uncertainty of the load
flows.

Since we need complete nominations, we also need to determine loads for en-
tries and the remaining 20 % of the exits for which no stochastic model could be
identified. These loads are generated by randomly sampling from all booking-
compliant nominations that extend a given statistical load scenario. In this way,
we obtain a large number (several thousands) of nominations. Finally, we use sce-
nario reduction techniques (cf. Heitsch and Romisch [19]) to find a smaller number
of nominations that are then validated. The use of scenario reduction allows to
capture the underlying probability distribution well and to identify a small set of
statistical load scenarios that approximately represent all original load scenarios.

The SN4 test set mentioned in Section [£.6] actually resulted from a proof-of-
concept implementation for our approach to verify booked capacities. In a first
step, we performed a statistical analysis of measured exit load data provided by
OGE, comprising the years 2004-2010. Based on this data we created 14 tem-
perature classes, usually with a width of 2°C. The only exceptions are the bor-
der temperature classes [—15°C, —4 °C] and [20 °C, 40 °C] which had to be chosen
rather large due to lack of measurement data. For each temperature class we
derived a stochastic model for a large part of the exit load flows and used this
model to sample 1000 statistical load scenarios, which were reduced to 50 repre-
sentative statistical load scenarios via scenario reduction [I9]. Using a realistic,
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temperature class # nominations validity probability «

[20°C, 40 °C] 184 100 %
[18°C, 20 °C] 186 97 %
[16°C, 18°C] 197 97%
[14°C, 16 °C] 193 98 %
[12°C, 14°C] 168 97%
[10°C, 12°C] 286 97 %
[8°C, 10°C] 415 75 %
[6°C,8°C] 430 70%
[4°C,6°C] 355 30%
[2°C,4°C] 295 9%
[0°C,2°C] 228 2%
[~2°C,0°C] 405 41%
[—4°C, —2°C] 335 5%
[—15°C, —4°C] 316 1%

Table 1: Exemplary results of verifying a booking.

but rough model of booking-compliance for a subset of OGE’s capacity contracts,
we generated 100 complete nominations from each statistical load scenario, i.e.,
we randomly selected loads for the entries and remaining exits such that the en-
try power matches the exit power and all loads comply with our rough model of
booking-compliance. These 100 nominations were reduced to a much smaller set
of representative nominations that are sufficiently dissimilar according to a certain
similarity measure.

These characteristics of the SN4 test set are shown in the first two columns
in Table [T} giving the temperature class together with the number of SN4 nom-
inations within it. As we can see, there are more dissimilar nominations in the
lower temperature ranges than in the upper. The final column of Table [I] shows
our estimate of the validity probability « of the considered booking, depending on
the temperature class. This probability has been obtained by counting a statistical
load scenario as verified, if and only if all of its nominations were feasible and then
adding the probabilities of the verified statistical load scenarios. Due to the rough
model for booking-compliance used so far and incompleteness of the contract data
used, the given probabilities are far from the real ones and we show them here only
to illustrate our approach and its results.

6 Awvailable Freely Allocable Capacities

Gas transmission system operators are not only obliged to verify that booking-
compliant transport situations can technically be realized, but they also have to
offer the maximum amount of firm freely allocable capacity (FAC) that is techni-
cally possible. We call the problem of determining the maximum firm FAC the
capacity problem.
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Figure 4: Tllustration of the quantile set (thick curve) for a probability level
p = 0.8 and a bivariate standard Gaussian distribution (represented here by 100
simulated points). The negative orthant attached to a quantile (dashed lines)
covers realizations of the random vector with probability p (i.e., approximately 80
of the simulated points).

Formally, the capacity problem can be seen as an optimization variant of the
former problem of verifying a booking as described in Section Whereas for
verifying a booking a probability needs to be determined, the capacity problem
now features a chance constraint requiring that the probability that every booking-
compliant nomination extending a statistical load scenario is technically feasible is
at least a. Moreover, the capacities at different points of the network are physically
interdependent: An increase of firm capacity at one point can decrease the firm
capacity at another point. Necessarily, the determined capacities have to be a
Pareto-optimum: capacity cannot be increased at any point unless it is reduced at
another one.

Verifying a booking is the special case of the capacity problem where the vector
of firm FAC is fixed. If the solution of the capacity problem is given in terms of the
Pareto set, one can immediately verify each booking using this information. On
the other hand, if the verification of a booking is not successful, i.e., the desired
probability level is not reached, the capacity problem can be used to determine
how much the firm FAC have to be reduced in order to achieve the probability
level.

The fact that the capacity problem is an optimization variant of verifying a
booking suggests that we extend the method presented in Section [5] Since, how-
ever, verifying a fixed booking is already very time consuming, there is little hope
to realize it numerically in such an optimization setting. One way to circumvent
this difficulty consists in aggregating the available stochastic information on the
statistical points in so-called multivariate quantiles. A multivariate p-quantile is
an artificial load scenario which (when viewed as a realization of the random load
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vector) dominates any statistical load scenario with probability p. Such quantiles
are not unique (see Fig. 4) and they can be numerically determined as level sets
to multivariate distribution functions (see Prekopa [27]). The latter are extracted
from the statistical information as explained in Section 5] Based on this concept,
a considerable numerical simplification of the capacity problem can be obtained
under the following monotonicity assumption: if a certain statistical load scenario
is feasible in the sense that all booking-compliant nominations extending it are
technically feasible, then the same holds true for all statistical load scenarios which
are component-wise smaller than the given one. As a consequence of this assump-
tion and of the definition of a p-quantile one gets the following: if a p-quantile is
feasible in the sense that all booking-compliant nominations extending this quan-
tile are technically feasible, then the same holds true with probability at least p
(e.g., p = «) for any statistical load scenario. Therefore, instead of checking a
large number of statistical load scenarios in order to verify the probability level «
(as done when verifying a booking as described in Section , one may restrict the
considerations to one or a small number of a-quantiles. Though some precision in
the characterization of the probability level may get lost due to violation of the
monotonicity assumption, this approach allows to capture the chance constraint of
the capacity problem with an acceptable numerical effort.

In order to determine an approximation to the Pareto-set of firm FAC vectors
for which the desired probability level can be achieved, we solve a relaxed variant of
the capacity problem. We assume that for each point at which firm FAC should be
offered, we know an upper bound on the firm FAC that is requested or can be used
there. We subdivide the space spanned by these upper bounds, the FAC space, in
small parts. For each of these parts, we try to establish feasibility for at least one
nomination in each of these parts using a nomination validation tool as described
in Section 4 However, instead of validating a fixed nomination, we allow intervals
at each FAC point corresponding to the current part of the FAC space. In effect, a
nomination validation tool then tries to find a nomination within this FAC interval
that extends the given quantile and is technically feasible. If all nominations in a
part are infeasible, bounds on the available capacity can be derived. We assume
that if a part is “small enough”, actually every nomination in this part is technically
feasible.

7 Topology Planning

The topology planning starts with an infeasible nomination and has to determine
network extensions such that the nomination can be realized in the extended net-
work.

All network elements are available as extensions. Together with suitable lo-
cations, the dimensioning of the added elements has to be determined, e.g., the
diameter of a new pipe or the power of a new compressor. Since in principle any
two points can be connected by a pipe, there is a continuum of possibilities to
extend the network.

Fach extension is associated with construction costs. The construction cost
of a new pipe can be estimated from the length of the pipe, its diameter and its
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exact course in the landscape. The course of the pipe is chosen with regard to the
cost, of different soil conditions that influence the construction process and costs
for the purchase of land use rights. Some areas, such has highly populated areas
or nature reserves, may not be traversed for pipeline construction. To this end,
we apply Dijkstra’s algorithm [9] to compute shortest paths on a grid graph with
discretized geographical data. Extension pipes that run in parallel to existing pipes
are known as loops and have reduced construction costs. A compressor incurs both
construction and operating costs depending on its power, and control valves possess
investment costs increasing with their flow capacity.

Our approach to topology planning subdivides the solution process into sev-
eral steps, yielding a cost-effective extended network that is able to handle the
nomination.

In a first step, we identify reasons for the infeasibility. This is done by adding
slack variables to some constraints of the nomination validation problem. Non-zero
slack translates to a violation of the respective constraints such that the absolute
slack values are to be minimized. One possibility is to relax the flow conservation
constraints, allowing gas to artificially enter or leave the network at any point.

Next, the results of the bottleneck analysis are used to obtain network extension
candidates. An important task is to construct sets of extensions that already ensure
feasibility of the nomination under consideration. The result of this second phase
is a list of additional network elements.

In the next step, a cost-optimal subset of the extensions is selected. To this
end, we extend the original network by the proposed extension elements. On this
extended network, we solve a modified nomination validation problem where the
usage of the extension elements is penalized with the elements construction and
discounted operating costs.

For typical topology planning runs on the network shown in Figure our
implementation is already able to select a suitable subset of extensions from 50-70
candidates within a running time of 12 hours. This running may seem long, but is
sufficient for strategic planning.

In practice such investment decisions would not be made on the basis of only one
infeasible nomination. However, this approach can be extended to handle multiple
nominations simultaneously ensuring robustness of the solution.

8 Outlook and Conclusions

The research on the topics described above is far from finished. First of all, the
sizes of networks that should be optimized are increasing constantly. The regulation
authority has increased the sizes of the market areas recently. Due to this and due
to mergers in the gas transport operating companies aggregation of two or more
networks is a future topic.

As more and more networks are aggregated the question arises whether the
infrastructure is adequate to the required capacities. Furthermore, the security
of supply is the topmost priority in gas transport. As networks grow bigger and
the existing capacities are ever more utilized it becomes essential to have better
planning tools based on accurate models. Topology planning could move into

19



network transformation, i.e., at the same time adding and removing elements from
the network.

Finally, so far no storage has been taken into account in the models we pre-

sented. This is a substantial deficiency. Devising models and optimization methods
that can handle a semi-transient situation including storage facilities would be a
major step forward.

We have no doubt gas networks will yield challenging questions for mathemati-

cians for at least another decade.
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