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Abstract: The flow of natural gas within a gas transmission network is stud-
ied with the aim to optimise such networks. The analysis of real data provides
a deeper insight into the behavior of gas in- and outflow. A geoadditive model
for describing the dependence between the maximum daily gas flow and the
temperature on network exits is proposed. Semiparametric expectile regression
provides the possibility to model the upper tail of the response distribution while
accounting for the spatial correlation between different exits. The effect of the
temperature is modeled with shape constraints to include knowledge about gas
load profiles and to allow for a realistic prediction. Estimates based on least
asymmetrically weighted squares (LAWS) and boosting are presented. The fore-
cast of gas loads for very low temperatures is included and the application of the
obtained results is discussed.
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1 Introduction

Expectiles are a great way to study trends and variation, skewness, etc. of
observed data. In this paper we will illustrate that by modeling the flow
of gas measured at the exits of a gas transmission network. We continue
the work of Friedl et al (2011) who used semiparametric mean regression
to analyse gas consumption subject to temperature changes for single exits
of the gas network. However, the upper tail of the conditional distribu-
tion of the gas flow is of more importance. It helps to generate extreme
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scenarios of gas consumption that are necessary to examine the capacities
of the gas network. Expectile regression offers a flexible and easy way to
model the tails of a distribution as it avoids a full specification of the er-
ror term distribution. The estimation of expectiles is based on minimising
an asymmetrically weighted sum of squared residuals. A semiparametric
least squares regression allows for a very flexbile regression structure by in-
cluding nonlinear effects of continuous covariates, random effects or spatial
effects. These extensions often rely on penalised least squares or penalised
likelihood estimation with quadratic penalties and are therefore natural
partners for least squares estimation.

Our geoadditive model comprises various parametric effects, a nonlinear
shape-constrained function of the temperature and a continuous spatial
effect based on the longitude and latitude of the exits.

2 Data Description

Data for this study were obtained from measuring stations within the Ger-
man pipeline network operated by Open Grid Europe GmbH (OGE), one
of the leading German gas transmission operators. It contains hourly gas
flow for 238 network exits for the period between June 2009 and May 2010.
Mean daily temperatures from the corresponding weather stations are also
provided. Additionally, we distinguish several exit types. Typical exits in
such networks are public utilities, industrial and areal consumers, as well as
exits on border and market crossings. Continuous geographic coordinates,
i.e., longitude and latitude for every node are also included.

We study the dependence of gas loads on air temperature, exit type and
the geographic location of exits within the network, simultaneously on all
exits along the pipelines of the gas transmission network. Since we want to
maximise the transportation capacity through the pipelines, we concentrate
on the daily maximum flows y3*®, i = 1,...,n (n = 365), at the exits
k=1,...,238 in the network. We note here that in this study we observe
the so-called H-network, which denotes the network with high Wobbe Index
(a measure for the heating value of the gas).

In what follows, we study the daily maximum flows standardised separately

for each exit
max

y Yir — Yk

ik — T

' 6 (yk)

in order to obtain comparable response values. As we are interested in the
upper tail of the conditional distribution of the response, a mean regression

is not sufficient. However, a quantile or expectile regression can be a sensible
estimate for the quantity of interest.
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3 Expectile Regression

The results of an expectile regression can be acquired by computing the
least asymmetrically weighted sum of the squared residuals (LAWS) ana-
logue to a quantile regression that minimises the asymmetrically weighted
absolute values of the residuals. LAWS minimises

S = wa(yi)(yi - Ni(T))2

with weights
N_J T if yi > pi(7)
wr(yi) = { 1—7  ify; < p(r)
where y; is a continuous response and p;(7) is the estimated expectile for
different values of the asymmetry parameter 7 € (0, 1). Hence the computa-
tion of expectile regression is very easy, since it avoids the non-differentiable
absolute value criterion that is used to estimate quantiles. In further com-
parison, expectiles lack the intuitive interpretation of quantiles. While the
quantile of a random variable Z immediately depicts the amount of proba-
bility that lies below it, the T-expectile (7) can only be defined implicitly:

e GO G(u(r)) — p(r)F(u())
[z — 1Ol Edz  2(GHm) — w(n)F () + (u(r) — #(05))

where G(m) = [ zf(z)dz and G(o0) = p(0.5) is the expectation of Z. In
—00

addition to the computational advantages of expectiles, one can build addi-

tive models that contain different kinds of effects. We portray these effects

by design matrices BY) and assign a vector of regression coefficients B; to

each effect. We can then create the following additive expectile regression

model:

p(r) =180+ Xp1 + BPBy +...+ BB, + e

For continuous univariate covariates, smooth expectile curves can be fitted
using penalised splines (see Schnabel and Eilers, 2009). Additionally the
model can include spatial effects based on either Markov random fields,
tensor product splines or Kriging (see Sobotka and Kneib, 2010). The
smoothing can be induced by a quadratic penalty on the regression co-
efficients:
pen(Bir) = i B - 1 85+

with adaptable smoothing parameter A\ and penalty matrix K.

As in the case of modeling gas flow we are interested mainly in extreme
expectiles describing the upper tail, we need to clarify the possible inter-

pretations of a single expectile curve. An expectile can be related to the
risk measure expected shortfall (ES) as for a random variable Z holds
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ESp(t) = BE(Z(t)|2(t) > %(1))
= (i) 1O e

with the 7-expectile p, and p = F;(u-(t)) (see Taylor, 2008). As shown the
expected shortfall is the conditional mean above the p-quantile and provides
more reliable information about extreme observations than the quantile.
This allows us to explicitly compute a risk bound for the maximum daily
gas flow.

4 Estimating and Forecasting Gas Flow

The model explaining the standardised maximum gas flows includes para-
metric effects X indicating a weekend day and the types of the exits. Fur-
ther a P-spline basis is used to model the effect of the local daily mean
temperature t. Finally, in a spatial effect the longitude u and latitude v of
each exit are included by a Kriging basis. The knots for this basis are chosen
as a subset k1, ..., kg from the covariate observations (u,v)1,..., (u,v)2ss.
The basis evaluation is defined by Matérn correlation functions like

By (r, ¢) = exp(=[r/o[)(1 + |r/¢])

with the Euclidean distance r = ||k —z|| and a fixed ¢ oc max; ;(||k; — k;|).
The penalty matrix K = (By, (||ki — k;]|)):,; then comprises the evaluated
distances between the knots.

The analysed model has the form

pr(y) =180+ + XB1,- + B(t)B2,r + B(u, V)85, + &7

Due to the physical properties of the gas and the observed behaviour of
industries and private households regarding gas consumption, certain re-
straints can be made to the effect of the temperature on the gas flow. First
of all, the demand for gas will generally decrease with higher temperatures.
However, even on very warm days there might be a minimum consumption
of gas. Even for very low temperatures the loads of gas will not exceed a
certain capacity. Hence, we include an additional iteration in the estima-
tion process, restricting the regression coefficients of the P-spline basis to
the realistic behaviour. This is achieved similar as in Bollaerts (2006) by an
additional iteration within the estimating. First, the shape-constraints are
defined as difference penalties on the spline coefficients. After an estimation
step those spline basis elements are identified that do not follow the restric-
tions. Here, the penalty is invoked and the estimation is repeated. Prelim-
inary results are shown in Figure 1. In the results one can easily see the
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gain of information through expectile regression. The variance and skew-
ness clearly changes with the temperature. Hence, the information about
extreme observations is more accurate than with mean regression. Also the
spatial effect is non-informative for the mean while a difference between
the north-eastern exits and the south-western exits is clearly shown in the
upper tail through the 0.99-expectile.

Maximum Daily Gas Flow 0.99

< ® 099 2
©© 095

51 52

standardised Flow
latitude
50

49

48

Temp longitude

FIGURE 1. Left: Standardised flow for temperature interval. Shape-constrained
effects for 6 asymmetries 7. Right: Spatial effect of the 0.99-expectile for 238 exits
marked as black points.

The analyses are performed using the R—package “expectreg” (Sobotka,
Schnabel, Schulze Waltrup, 2012).
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