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Abstract: The term structure of credit spreads is studied with an aim to pre-
dict its future movements. A completely new approach to tackle this problem
is presented, which utilizes nonlinear parametric models. The Brain-Cousens re-
gression model with five parameters is chosen to describe the term structure of
credit spreads. Further, we investigate the dependence of the parameter changes
over time and the determinants of credit spreads.
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1 Introduction and Motivation

We study the historical development of the credit spread curves, and are
interested in forcasting future movements of credit spreads. In economic
sciences, credit spreads represent the premium paid for specific risks em-
bedded in a bond. The risk factors include geopolitical and macroeconomic
variables. For details, see e.g. Schlecker (2009). The existing methods used
in the banking industry proved unsatisfactory in times of financial crisis,
as the relationship between issuer and reference curves has changed.
We scrutinize the behavior of credit spreads from a completely different
perspective. We model the credit spread curve not by the common layer-
factor approach, but we approximate the curve by a nonlinear parametric
function with several parameters. Then we concentrate on finding the de-
pendencies between these parameters and timely available and observable
indicators and market data. This is motivated by the fact that the com-
plexity of the parametric curve can be reduced to a small number of param-
eters so that changing patterns of the curve structure can be understood in
terms of changes in these parameters. Also, each nonlinear parametric curve
may be summarized by its parameter estimates as a single low-dimensional
multivariate observation, which then may be subject to a regression or a
correlation analysis.
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FIGURE 1. The term structure of ISDA fixings (S, dashed line), German gov-
ernment bonds (B, dotted line) and credit spreads (CS, solid line) on October
21, 2011 (left) and May 31, 2012 (right).

The following model which describes the structure of credit spreads yi for
given times to maturity xj is studied:

yi = y(xj) + εi,

where xj , j = 1, . . . , 12, denotes the time to maturity in years of quoted
credit spreads, usually x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20), and εi ∼ F(0, σ2)
are error terms with zero mean and constant variance σ2, for i = 1, . . . , n.

2 Data Description

The analyzed data set is based on an excerpt from the Bloomberg data
base, and contains daily quotation of ISDA fixings for Euro and German
government bonds for all maturities for the period between June 2011 and
June 2012, i.e. n = 258. The credit spreads yi are obtained by subtracting
the issuer curve from the reference curve, as Figure 1 shows graphically.
Comparing credit spread curves in Figure 1 (left) and (right), it becomes
evident that the structure of credit spread curves is changing, and we need
a model that will be flexible enough to capture possible developments and
different shapes of credit spread curves.

3 Nonlinear Regression Model

We fit a parametric nonlinear logistic regression model and analyze the
term structure of credit spreads. The generalization of the log-logistic re-
gression, the so-called Brain-Cousens model (BC-model) is proposed by
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Ritz and Streibig (2008) for this kind of dependency. Some authors pro-
pose some variant of spline regression for similar problems, see e.g. Jarrow
et al. (2004).
The BC-model is defined by

y(xj) = c+
d+ f xj − c

1 + exp(b [ln(xj)− ln(e)])
, (1)

and the parameters in model (1) have the following meaning: c and d define
the upper and lower horizontal asymptotes, f is the slope of the upper
asymptote, while b and e describe the shape of the decrease of the curve,
i.e. e is the inflection point of the curve, and b is proportional to the slope
at xj = e. A similar approach for describing nonlinear dependancies is
proposed in Friedl et al. (2012).
The starting values for the iteration necessary to calculate the least squares
estimates of parameters are obtained either by using the parameter esti-
mates of the previous day or by generating random starting values. If the
parameter estimates from the previous day used as the starting values for
the next day’s estimation did not lead to convergence, random starting val-
ues from the interval [−2, 2] are used. This approach is introduced in order
to obtain convergence also in cases when the behavior of credit spreads
changes dramatically from one day to another. It also enables the iden-
tification of days when market fluctuations influence the development of
credit spreads strongly.
The results of the parameter estimation for both curves shown in Figure 1
are given in Table 1. We refer to Figure 2 for a graphical representation of
the fitted models. We note that for the model fit shown in Figure 2 (left),
nine random iterations of starting values were necessary to obtain conver-
gence. This method yields convergence for 231 out of 258 days. Without
random starting values, the convergence is obtained for only 180 days.

TABLE 1. MLEs (std. errors) of the BC-model (left) and (right).

b c d e f

4.9129 0.0772 0.9300 12.7469 -0.0209
(1.3833) (0.0648) (0.0307) (1.0744) (0.0094)

1.3550 -1.5464 -0.2754 2.4529 1.4679
(0.1951) (1.1451) (0.3344) (0.8448) (1.0474)

4 Conclusion

We study the term structure of credit spreads with an aim to predict their
future movements. We suggest a completely new approach to tackle this
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FIGURE 2. Fitted BC model given by (1) (solid line) and quoted credit spread
values at time to maturity on October 21, 2011 (left) and May 31, 2012 (right).

problem, and instead of modeling credit spreads by the means of the layer-
factor model, we utilize a nonlinear parametric model and concentrate on
its parameters. The Brain-Cousens regression model with five parameters
is chosen to describe the term structure of credit spreads. Random starting
values are introduced in order to obtain convergence of parameter estimates
also in cases when the behavior of credit spreads changes dramatically.
Eventually, the dependence of the parameter values and given microeco-
nomic factors over time is to be analyzed.
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