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Abstract: The flow of natural gas within a gas transmission network is studied
with the aim to predict gas loads for very low temperatures. Two models for
describing dependence between the maximal daily gas flow and the temperature
on network exits are presented. A Brain-Cousens regression model is chosen from
the class of parametric models. As an alternative, a semi-parametric logistic re-
gression based on penalized splines is considered. The comparison of prediction
based on both models is included.
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1 Introduction and Model Motivation

We study historical data of the flow of gas transported in networks in or-
der to support a reliable and realistic prediction of the future gas flow. The
forecast of gas loads at the so-called design temperature is of particular
interest. The design temperature is the lowest temperature at which the
gas operator is still obliged to supply gas without failure, and lies between
−12◦C and −16◦C. Such low mean daily temperatures are very uncommon
in Germany, and there is no gas flow data available at the design tempera-
ture. For this reason gas operators are forced to use the predicted gas loads
at the design temperature, and we present here two models useful for the
forecast.
Data is obtained from measuring stations within the German pipeline net-
work operated by Open Grid Europe GmbH, one of the largest German gas
transporters. It contains hourly gas flow for the period between January
2004 and June 2009, and the corresponding mean daily temperatures. We
study the dependence of gas loads and air temperature on all exits along
the pipelines. Typical exits in such networks are public utilities, industrial
consumers and storages, as well as exits on border and regional crossings.
Since we want to maximize the transportation capacity through the pipelines,
we concentrate on the daily maximum flows ymaxi , i = 1, . . . , n (n = 2005),
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at each exit, for every exit in the network. We consider the standardized
daily maximum flows yi = ymaxi /ȳ, where ȳ denotes the empirical mean of
all maximal daily gas flows at one specific measuring station.
The following model to describe the dependence of the standardized max-
imal daily gas loads yi on temperature ti is studied:

yi = S(ti) + εi, (1)

where ti stands for the weighted four-day-mean temperature with the weights

(0.53, 0.27, 0.13, 0.07), and εi
iid∼ N (0, σ2) are error terms, for i = 1, . . . , n,

as suggested in Cerbe (2008).
Friedl et al. (2011) explore different modeling possibilities for this problem,
and suggest several appropriate variants for the function S(ti). They also
compare advantages and disadvantages of both approaches.

2 Nonlinear and P-Splines Regression Models

We fit a parametric as well as a semi-parametric nonlinear logistic regres-
sion model and analyze the properties of the gas flow through the pipelines
in dependence of the temperature and the forecast based on these mod-
els. The so-called Brain-Cousens model (BC-model) is proposed by Ritz
and Streibig (2008) for this kind of problems, while many authors propose
some variant of spline regression, see e.g. Jones et al. (2009), Jarrow et al.
(2004), Eilers and Marx (1996). A comparison of both approaches for a
duck growth problem is presented in Vitezica et al. (2010).
In the class of parametric models, we consider the BC-model, which is
defined by

S(ti) = θ4 +
θ1 + θ6

(
θ2

ti−40◦C + diθ5

)
− θ4

1 +

(
θ2

ti − 40◦C
+ diθ5

)θ3 , (2)

where

di =

{
1 if day i is a working day,
0 if day i is a holiday or at weekends,

indicates whether the gas loads occurred on working days or on weekends
and holidays.
The parameters in model (2) are used as follows: θ1, θ6 and θ4 define the
upper and lower asymptotes, θ5 indicates the type of the day, while θ2 and
θ3 describe the shape of the decrease of the curve. We use initial values
provided in Friedl et al. (2011). The results of the evaluation are given in
Table 1. Parameters θ5 and θ6 in the model are significant, implying that
the that the expected gas loads differ during the week (W) and on weekends
and holidays (H), and the upper asymptote is a line with slope θ6. For low
temperatures, the modified upper asymptote in the BC-model implies the
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FIGURE 1. Fitted BC-model with indicator day (left) and penalized splines
regression with indicator day (right) based on cubic B-splines on the mesh with
10 segments and the second order penalty λ = 2.51.

day-specific increase of the mean gas flow for approximately 2 times scaled
ȳ when the temperature decreases for 1◦C. The graphical representation of
model (2) is shown in Figure 1 (left).

TABLE 1. MLEs (std. errors) of the BC-model.

θ1 θ2 θ3 θ4 θ5 θ6
3.1805 −28.0417 6.5713 0.5229 −0.0447 −2.0807

(0.1062) (0.7960) (0.3431) (0.0197) (0.0031) (0.2269)

Alternatively, Friedl et al. (2011) suggest the penalized splines (P-splines)
approach, and assume that the function S(ti) is the linear combination of
basis functions Bj , j = 1, . . . ,m, on the mesh ∆, given by

S(ti) =

m∑
j=1

ajBj(ti) + am+1di, (3)

and Bj are basis functions of the B-spline of degree q, and the mesh ∆ is
an equidistant grid over m − q segments, i.e. with m − q + 1 inner knots.
The regression coefficients are obtained taking into account the smoothing
penalty λ. We refer to Figure 1 (right) for a graphical representation of the
fitted P-splines model and the position of the inner knots based on cubic
B-splines on the mesh with 10 segments and the second order penalty
λ = 100.4 = 2.51.
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3 Prediction

The models presented in Section 2 are now utilized for the prediction of
gas loads at the design temperature. Recall, the design temperature lies
outside of the domain of the predictor variable ti, i = 1, . . . , 2005. To this
end, we replace the existing temperature ti by a new predictor variable
t̃k, k = 1, . . . , ñ, generated as an equidistant grid of temperatures, which
includes low temperatures of interest. In particular, we generate t̃k starting
from the lowest possible design temperature, i.e. −16◦C, and go up to 35◦C
with step size 1. Based on the new data and the fitted models (2), and (3),
the predictions

ỹk = S(t̃k) + εk, εk
iid∼ N (0, σ2), k = 1, . . . , 52,

are calculated.
The predicted values based on the BC-model are obtained using the predict
method in R, as described in Ritz and Streibig (2008). P-splines allow
straightforward smooth extrapolation, and we exploit this property to fore-
cast gas loads at the design temperature. The second order penalty implies
the extrapolation by a linear sequence, cf. Eilers and Marx (2010).
Figure 2 illustrates the prediction based on the BC-model and P-splines
regression. At the design temperature of −12◦C the predicted gas loads on
working days based on models (2), and (3), are 38817, and 43048 KWh/h,
respectively.

FIGURE 2. Prediction for working days based on the BC and P-splines model.

In the case of nonlinear regression models, the standard error estimates
do not change substantially when we leave the domain of the predictor



Mirkov, R. and Friedl, H. 5

variable. Figure 3 (left) represents the predicted values for working days
based on the BC-model (2), and the corresponding standard error bands.
The näıve method based on the assumptions of the normality of error terms
and the variance homogeneity is emplyed to determine standard errors of
parameters. Some other methods for constructing prediction intervals for
nonlinear regression can be found in Gauchi et al. (2010), and Ritz and
Streibig (2008).
It is well known that extrapolation in the case of splines can be unsafe for
the prediction, although the model provides a good fit for gas loads. This
fact is reflected in the shape of the error bands for the P-splines model (3).
Due to the local smoothing, the fit is very good with a small error band
width within the domain of the predictor variable, while the increase in
the width of error bands is large as soon as we extrapolate. The Bayesian
estimate of the standard error bands for the fitted P-splines model for
working days are shown in Figure 3 (right).

FIGURE 3. Prediction for working days based on the BC model (left) and P-
splines (right) with the corresponding standard error bands.

4 Conclusions

We investigate prediction based on the nonlinear BC-model and on the
semi-parametric P-splines regression. Both the BC-model and the P-splines
reflect the behavior of gas flow for low temperatures in a realistic way. We
note that the nonlinear regression models are generally more difficult to
handle than the local smoothers like the P-splines, because of their nu-
merical properties. Contrary to them, the P-splines methodology is a very
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flexible simpler alternative, but it does not support the multiple regression
techniques, and one cannot exploit the desirable flexible temperature ef-
fects. The forecast of gas loads based on the BC-model is safer than the
one relying on the P-splines, due to the numerical construction of models.
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