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1. Introduction

We describe in this note stochastic processes, especially Gaussian ones, with paths in generalized function algebras
through their representation with respect to a parameter ε < 1 and appropriate estimates with respect to ε → 0. Our
main motivation is to develop a basic calculus for singular stochastic processes, such as the white noise process, within an
algebra of generalized stochastic processes. We will refer to stochastic processes with paths in generalized function algebras
shortly as to GFA-stochastic processes. Also, we suggest a simple method of solving stochastic differential equations in the
framework of Gaussian GFA-stochastic processes.

Generalized random processes were introduced by Gel’fand and Vilenkin in [3] and investigated by many authors. De-
pending on the type of generalization one can distinguish different types of generalized random processes. Generalized
stochastic processes as elements of L(V , L2(O)) i.e. as linear continuous mappings of a test space V into the space of ran-
dom variables with finite second moments can be found in [9,10], while mappings into generalized random variable spaces
with chaos expansions are subject of [6,7,11]. (In this paper we use the notation O for the probability space and Ω for
an open set of R

d .) Another approach, originated from the older papers [5,23,24] (see also [12,13]), deals with generalized
random processes defined as mappings ξ : O × V → C such that for every ϕ ∈ V , ξ(·,ϕ) is a complex random variable, and
for every ω ∈ O, ξ(ω, ·) is an element in V ′ . We have recently studied generalized processes of both types in [20] and [21].

Stochastic processes with paths in algebras of generalized functions are considered by Oberguggenberger, Russo and
their coauthors in [1,15,17–19,22] and are used in solving some classes of nonlinear stochastic equations. The algebra of
generalized functions considered in these papers is the Colombeau algebra of generalized functions denoted by G(Ω), where
Ω ⊂ R

d is an open set. This algebra contains the space of Schwartz distributions D′(Ω) as a subspace. Stochastic processes
are defined as mappings O → G(Ω) and called Colombeau generalized stochastic processes. Also, Oberguggenberger and
Russo have shown that distribution stochastic processes i.e. weakly measurable mappings X : O → D′(Ω), where X : ω �→
〈X(ω),φ〉 is measurable for every φ ∈ D(Ω), can be embedded into Colombeau generalized stochastic processes. We refer
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also to [7] for different classes of generalized stochastic processes among which the Colombeau setting of such processes is
mentioned.

In this paper we will consider stochastic processes with values in L p(O), p � 1, and L(O), the space of complex mea-
surable functions endowed with almost sure convergence. For this purpose we introduce in Section 2 algebra G(Ω, L(O)),
vector spaces G(Ω, L p(O)) and G(Ω, L(O)), G(Ω, [L p(O)]) and call their elements GFA-stochastic processes. In Section 3
we analyze the embedding of spaces of generalized functional stochastic processes L(D(Ω), L p(O)) and L0(D(Ω), L(O))

into the GFA-stochastic process space G(Ω, L p(O)) and the GFA-stochastic process algebra G(Ω, L(O)), respectively. In Sec-
tion 4 we determine Gaussian GFA-stochastic processes, elements of G(Ω, [L p(O)]), by their first two moments which are
elements of the algebra of generalized functions; in this approach, the classical proof is implemented with parametric esti-
mates. As an application of this theorem, the white noise process is analyzed in the GFA-stochastic process setting. Moreover,
solutions of a class of stochastic partial differential equations (SPDEs) in the framework of Gaussian GFA-stochastic process
are analyzed and a suitable necessary condition for the existence of a solution is formulated.

2. GFA-stochastic processes

2.1. Algebra of generalized functions

We will deal with the algebra of generalized functions first constructed by Colombeau. Omitting the general construction
[2,4,15], we recall only the definition of the algebra G(Ω) on an open set Ω in R

n . In order to simplify the understanding of
this algebra one can have in mind distributions regularized through Friedrich’s mollifiers and then extend this space of nets
of regularized functions to a differential algebra of nets of functions. We will use the notations Dα = Dα

x = ∂α = ∂
α1
x1 . . . ∂

αd
xd

for the partial differential operator, α ∈ N0.

Definition 2.1. Set E (Ω) = (C∞(Ω))I , I = (0,1],

EM(Ω) =
{
(uε)ε ∈ E (Ω): (∀K � Ω)

(∀α ∈ N
n
0

)
(∃p ∈ N)

(
sup
x∈K

∣∣∂αuε(x)
∣∣ = O

(
ε−p))}

,

N (Ω) =
{
(uε)ε ∈ E (Ω): (∀K � Ω)

(∀α ∈ N
n
0

)
(∀q ∈ N)

(
sup
x∈K

∣∣∂αuε(x)
∣∣ = O

(
εq))}

,

G(Ω) = EM(Ω)/N (Ω).

Elements of EM(Ω) and N (Ω) are called moderate, resp. negligible nets of functions.

In the definition the Landau symbol aε = O(bε) appears, having the following meaning: (∃C > 0)(∃ε0 ∈ I)(∀ε ∈
(0, ε0))(aε � Cbε).

Note that EM(Ω) is a differential algebra with pointwise operations. It is the largest differential subalgebra of E (Ω) in
which N (Ω) is a differential ideal. Thus, G(Ω) is an associative, commutative differential algebra. If (uε)ε ∈ EM(Ω) is a
representative of u ∈ G(Ω), we write u = [(uε)ε].

We use a net of mollifiers ϕε ∈ S(Rn), ε ∈ I , of the form

ϕε(x) = 1

εn
ϕ

(
x

ε

)
, x ∈ R

n, ε ∈ I, (1)

where ϕ ∈ S(Rn) has the properties
∫

ϕ(x)dx = 1,
∫

xkϕ(x)dx = 0, k ∈ N, and ϕ is positive definite i.e. ϕ̂ � 0, where ϕ̂
denotes the Fourier transformation of ϕ . (For example one can take ϕ̂ ∈ D(Rn), ϕ̂ � 0 and ϕ̂ ≡ 1 in a neighborhood of
zero.) The Fourier transformation of φ ∈ S(Rn) is defined as φ̂(x) = ∫

Rn e−i〈x,t〉φ(t)dt , and the Fourier transformation in

S ′(Rn) is given by 〈 f̂ , φ〉 = 〈 f , φ̂〉, f ∈ S ′(Rn), φ ∈ S(Rn).
Let be a compactly supported Schwartz distribution, T ∈ E ′(Ω). Then by

T � Cd(T ) = [(
(T ∗ ϕε)|Ω

)
ε

] = (
(T ∗ ϕε)|Ω

)
ε
+ N (Ω)

is defined a linear embedding of E ′(Ω) into G(Ω). Since the presheaf Ω �→ G(Ω) is a soft sheaf, it follows that the above
embedding can be extended to an embedding of D′(Ω) and C∞(Ω) into G(Ω) for any open set Ω ⊂ R

n .
Rather than considering equality in G(Ω), it is more usual to consider the notion of association. We say that u = [(uε)ε]

and v = [(vε)ε] are associated in G(Ω), denoted by u ≈ v , if

lim
ε→0

∫
Ω

(
uε(x) − vε(x)

)
φ(x)dx = 0, for all φ ∈ D(Ω).

Similarly, u = [(uε)ε] ∈ G(Ω) is associated with an element f ∈ D′(Ω) (in this case f is called the distributional shadow
of u) if limε→0

∫
uε(x)φ(x)dx = 〈 f , φ〉, for all φ ∈ D(Ω).
Ω
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2.2. Definitions of GFA-stochastic processes

As we already stated, (O,U, P ) denotes a probability space, and Ω ⊂ R
d is an open set.

Definition 2.2. Let E (Ω, L(O)) be the set of nets (uε(ω, x))ε , ω ∈ O, x ∈ Ω , ε ∈ I , such that, for almost every (a.e.) ω ∈ O,
it holds (uε(ω, ·))ε ∈ (C∞(Ω))I , and for every x ∈ Ω , (uε(·, x))ε is a net of measurable functions on O. Set

EM
(
Ω, L(O)

) =
{
(uε)ε ∈ E

(
Ω, L(O)

)
: (for a.e. ω ∈ O)(∀K � Ω)

(∀α ∈ N
n
0

)
(∃a ∈ N)

(
sup
x∈K

∣∣∂αuε(ω, x)
∣∣ = O

(
ε−a))}

,

N
(
Ω, L(O)

) =
{
(uε)ε ∈ E

(
Ω, L(O)

)
: (for a.e. ω ∈ O)(∀K � Ω)

(∀α ∈ N
n
0

)
(∀b ∈ N)

(
sup
x∈K

∣∣∂αuε(ω, x)
∣∣ = O

(
εb))}

.

Elements of EM(Ω, L(O)) and N (Ω, L(O)) are called moderate and negligible nets of functions with values in L(O),
respectively.

The space of L(O) GFA-stochastic processes is defined as

G
(
Ω, L(O)

) = EM
(
Ω, L(O)

)
/N

(
Ω, L(O)

)
.

As EM(Ω, L(O)) is an algebra with respect to multiplication, and N (Ω, L(O)) an ideal in EM(Ω, L(O)), we have that
G(Ω, L(O)) is an algebra.

The next step is to adopt the theory of generalized stochastic processes to the case of function with values in L p(O).

Definition 2.3. Let p � 1. Denote: E (Ω, L p(O)) = (C∞(Ω, L p(O)))I . Then:

EM
(
Ω, L p(O)

) =
{
(uε)ε ∈ E

(
Ω, L p(O)

)
: (∀K � Ω)

(∀α ∈ N
n
0

)
(∃a ∈ N)

(
sup
x∈K

∥∥∂αuε(·, x)
∥∥

Lp = O
(
ε−a))}

,

N
(
Ω, L p(O)

) =
{
(uε)ε ∈ E

(
Ω, L p(O)

)
: (∀K � Ω)

(∀α ∈ N
n
0

)
(∀b ∈ N)

(
sup
x∈K

∥∥∂αuε(·, x)
∥∥

Lp = O
(
εb))}

.

Elements of EM(Ω, L p(O)) and N (Ω, L p(O)) are called moderate and negligible nets of functions with values in L p(O),
respectively.

The space of L p(O) GFA-stochastic processes is defined as

G
(
Ω, L p(O)

) = EM
(
Ω, L p(O)

)
/N

(
Ω, L p(O)

)
.

Let (O, Lε(O), Pε), ε ∈ I , be a net of probability spaces and let L p
ε (O), ε ∈ I , be a net of corresponding L p-spaces. We

will consider in Section 4 the following extension of Definition 2.3.

Definition 2.4. Let p � 1. Denote: E (Ω, [L p
ε (O)]) = (C∞(Ω, L p

ε (O)))I . Then:

EM
(
Ω,

[
L p
ε (O)

]) =
{
(uε)ε ∈ E

(
Ω,

[
L p
ε (O)

])
: (∀K � Ω)

(∀α ∈ N
n
0

)
(∃a ∈ N)

(
sup
x∈K

∥∥∂αuε(·, x)
∥∥

Lp
ε

= O
(
ε−a))}

,

N
(
Ω,

[
L p
ε (O)

]) =
{
(uε)ε ∈ E

(
Ω,

[
L p
ε (O)

])
: (∀K � Ω)

(∀α ∈ N
n
0

)
(∀b ∈ N)

(
sup
x∈K

∥∥∂αuε(·, x)
∥∥

Lp
ε

= O
(
εb))}

.

We use the notation EM(Ω, [L p
ε (O)]), N (Ω, [L p

ε (O)]) as well as

G
(
Ω,

[
L p
ε (O)

]) = EM
(
Ω,

[
L p
ε (O)

])
/N

(
Ω,

[
L p
ε (O)

])
and call them spaces of moderate and negligible nets of functions and nets of functions with values in [L p(O)], respectively,
as well as [L p(O)] GFA-stochastic processes.

Clearly, if L p
ε = L p, ε ∈ I , then EM(Ω, [L p

ε (O)]) = EM(Ω, L p(O)).

Remark 1. Note that by “push forward” all the ε-random variables O � ω → uε(ω, x) ∈ R
n (x ∈ Ω) are pushed to R

n with
the Borel σ -algebra and ε-weighted Lebesgues measures, ε ∈ I . In this sense, the definition of Gaussian GFA-stochastic
processes in Section 4 is given without referring on a net (L p

ε (O))ε .

We emphasize that the operation of multiplication is not closed in EM(Ω, L p(O)) and EM(Ω, [L p(O)]).
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3. Embeddings of generalized functional stochastic processes into GFA-stochastic processes

3.1. Generalized functional stochastic processes

First, we recall in an abstract manner two classes of generalized stochastic processes, depending on the type of conver-
gence. Let us denote by V a locally convex space and let V ′ be its dual space. Then, by L(V , L(O)) and L(V , L p(O)) are
denoted the spaces of linear and continuous mappings from V into the respected spaces. Elements of these spaces are called
generalized functional stochastic processes. In general case, if ξ(·,ϕ) ∈ L(V , L(O)), ϕ ∈ V , then one cannot claim continuity
of the mapping ξ(ω, ·) for fixed ω ∈ O.

We will consider in this paper L(V , L p(O)) and L0(V , L(O)) ⊂ L(V , L(O)), where L0(V , L(O)) consists of those ele-
ments f (ω,φ), (ω,φ) ∈ O × V which have the property: There exists O f a subset of O of zero measure such that

f (ω, ·) ∈ V ′ for every ω ∈ O \ O f .

For example, if V is a nuclear space, then L0(V , L(O)) = L(V , L(O)) i.e. on nuclear spaces each generalized functional
stochastic processes has a version with continuous paths (this was shown in [25]). Examples of spaces where L0(V , L(O)) �=
L(V , L(O)) can be found in [21].

Theorem 3.1. Let V be a separable space and ξ1, ξ2 ∈ L0(V , L(O)). The following conditions are equivalent.

(a) For every ϕ ∈ V , P {ω: ξ1(ω,ϕ) = ξ2(ω,ϕ)} = 1.
(b) There exists W0 ⊂ O, such that P (W0) = 1, and, for every ω ∈ W0 , ξ1(ω, ·) = ξ2(ω, ·) in V ′ .

Proof. Let (a) hold and V 0 be a countable dense set in V . Set, for ϕ ∈ V 0, Wϕ = {ω: ξ1(ω,ϕ) = ξ2(ω,ϕ)}. Clearly,
P (Wϕ) = 1. Denote

W0 =
⋃

ϕ∈V 0

Wϕ =
⋃{

ω: ξ1(ω,ϕ) = ξ2(ω,ϕ), ϕ ∈ V 0
}
.

Since P (W0) = 1, we have to prove (b) for any ω ∈ W0 and ϕ ∈ V . There exists a sequence (ϕn)n ∈ V N

0 , such that ϕn → ϕ
in V , as n → ∞. The equality ξ1(ω,ϕn) = ξ2(ω,ϕn) for ϕn ∈ V 0, ω ∈ W0, implies that

ξ1(ω,ϕ) = lim
n→∞ ξ1(ω,ϕn) = lim

n→∞ ξ2(ω,ϕn) = ξ2(ω,ϕ).

The converse assertion is obvious. �
If ξ1, ξ2 ∈ L(V , L p(O)), then they are equal if for any ϕ ∈ V ,∫

O

∣∣ξ1(ω,ϕ) − ξ2(ω,ϕ)
∣∣p

dP (ω) = 0.

Let ξ ∈ L(V , L p(O)). Since the inclusion mapping L p(O) → L1(O) is continuous, it follows that the linear mapping
V � ϕ �

∫
O

ξ(ω,ϕ)dP (ω) is continuous. Thus the expectation of ξ , E(ξ(ω,ϕ)) = m(ϕ), ϕ ∈ V , exists and belongs to V ′ .
Without loss of generality, we may assume (when needed) that E(ξ(·,ϕ)) = 0, for an arbitrary ϕ ∈ V .

If E(ξ(ω,ϕ)ξ(ω,ψ)) exists for all ϕ and ψ , and it is continuous with respect to each argument ϕ and ψ (for example,
if p = 2), the correlation operator of ξ ∈ L(V , L p(O)) is defined by

Bξ (ϕ,ψ) = E
(
ξ(·,ϕ)ξ(·,ψ)

)
, ϕ,ψ ∈ V ,

and the covariance operator is defined by

Cξ (ϕ,ψ) = Bξ (ϕ,ψ) − m(ϕ)m(ψ).

3.2. Embeddings

In the sequel, we put V = D(Ω) endowed with the usual topology in D(Ω). Let ξ ∈ L0(D(Ω), L(O)), respectively
ξ ∈ L(D(Ω), L p(O)). Denote by (κε)ε a net of smooth functions supported by Ω−ε = {x ∈ Ω: d(x,R

n \Ω) > ε}, ε � ε0, such
that κε ≡ 1 on Ω−2ε , ε < ε0. Let (ϕε)ε denote the net of mollifiers defined by (1). Then

uε(ω, x) = (κεξ)
(
ω,ϕε(· − x)

)
, ω ∈ O, x ∈ Ω, ε ∈ I, (2)

defines an element of EM(Ω, L(O)), respectively EM(Ω, L p(O)), denoted by u = [(uε)ε]. If ξ is compactly supported, then
in (2) we may take
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uε(ω, x) = ξ
(
ω,ϕε(· − x)

)
, ω ∈ O, x ∈ Ω, ε ∈ I,

since (κεξ)(ω,φ) = ξ(ω,φ), ω ∈ O, φ ∈ D(Ω), ε ∈ I .
We want to show that different generalized functional stochastic processes on D(Ω) define different GFA-stochastic

processes. Also, we shall give an example of a GFA-stochastic process which is not obtained by the embedding of a functional
stochastic process.

First we quote some preassumptions we will use in the sequel. Every ξ ∈ L0(D(Ω), L(O)), respectively ξ ∈ L(D(Ω),

L p(O)) can be written in the form ξ = ∑∞
i=1 ξχi , where (χi)i∈N is a partition of unity for an open cover of Ω consisting of

bounded sets so that Ki = suppχi � Ω , i ∈ N, and so we have ξχi ∈ L0(E (Ω), L(O)), i ∈ N. Thus, without loss of generality
in studying the equality of stochastic processes, we will assume that ξ has a compact support (else we use a partition of
unity and the sheaf properties of D(Ω)). We will also assume that compact sets under consideration are of the form W ,
where W ⊂ Ω is an open bounded set with a boundary that is regular enough, so that functions from Cm(W ), m ∈ N, can
be extended to Cm(Ω1) for some Ω1, W � Ω1 � Ω . (When W is an open set, the notation W � Ω1 means that W is a
compact subset in Ω1.)

Now we quote some results of distribution theory. Let ξ ∈ L0(E (Ω), L(O)) and K0 = supp ξ . Then, for almost all ω ∈ O,
ξ(ω, ·) can be continuously extended to functions from Cm(K ) for some m ∈ N and some compact set K , K0 � K � Ω (here
we used the preassumptions quoted above). Now, for every φ ∈ Cm(K ) there exists an open set Ω1, K � Ω1 � Ω , so that φ

can be extended to a function (again denoted by φ) belonging to Cm(Ω1). Let Ω2 be an open set such that K � Ω2 � Ω1.
The net of smooth functions Ω2 � x �→ ∫

Ω2
ϕε(x − t)φ(t)dt , ε < ε0, converges to φ in Cm(K ).

Lemma 2. Let (ϕε)ε be the net of mollifiers defined in (1) and K � Ω2 as quoted above. The set of functions A = {ϕε(· − t)|K ;
t ∈ Ω2, ε ∈ (0,1)} is dense in Cm(K ).

Proof. We will show that if g(ω, ·) ∈ (Cm(K ))′ for almost all ω ∈ O, then for almost all ω ∈ O:

g(ω,φ) = 0, φ ∈ A �⇒ g(ω,ψ) = 0, ψ ∈ Cm(K ).

This will imply the assertion. Let ψ ∈ Cm(K ) so that it can be extended in Ω1. We have for almost all ω ∈ O,

〈g,ψ〉 = lim
ε→0

〈
g(ω, ·),

∫
Ω2

ϕε(· − t)ψ(t)dt

〉
= lim

ε→0

〈〈
g(ω, ·),ϕε(· − t)|K

〉
,ψ(t)

〉 = 0.

This completes the proof. �
Now, we prove the main results of this section, that (2) defines an embedding L(D(Ω), L p(O)) ↪→ G(Ω, L p(O)), as well

as an embedding L0(D(Ω), L(O)) ↪→ G(Ω, L(O)). In other words, both generalized functional stochastic processes with
finite moments and generalized functional stochastic processes with continuous versions can be embedded into appropriate
GFA-stochastic process spaces.

Theorem 3.2. If ξ1, ξ2 ∈ L0(D(Ω), L(O)) and ξ1 �= ξ2 , then the corresponding elements u1 and u2 of G(Ω, L(O)) are also different.

Proof. Recall, we may assume that ξ = ξ1 − ξ2 is compactly supported, else we use the partition of unity. Since, ξ �= 0, it
follows that there exists a function ϕ0 ∈ D(Ω) and a set W0 ⊂ O, P (W0) > 0, such that, for every ω ∈ W0, ξ(ω,ϕ0) �= 0.
Let K0 = supp ξ and K0 � K � Ω as before. By Lemma 2, there exist a sequence (tn)n∈N in Ω2 and a sequence (εn)n∈N in
(0,1), such that ϕεn (· − tn) → ϕ0(·) in Cm(K ) as n → ∞. For every ω ∈ W0

ξ
(
ω,ϕεn (· − tn)|K

) → ξ(ω,ϕ0) �= 0, n → ∞.

Thus, for every ω ∈ W0,

sup
t∈Ω2,n∈N

∣∣ξ(
ω,ϕεn (· − t)

)∣∣ �= o(1),

which means that ξ(ω,ϕε(·− t)) is not a negligible function, i.e. ξ1 and ξ2 determine different elements of G(Ω, L(O)). �
Now we show that different elements of L(D(Ω), L p(O)) determine different elements of G(Ω, L p(O)).

Theorem 3.3. Let ξ1, ξ2 ∈ L(D(Ω), L p(O)) and ξ1 �= ξ2 . The corresponding elements u1 and u2 of G(Ω, L p(O)) are also different.

Proof. Assume again that ξ = ξ1 − ξ2 has a compact support K0. Since ξ �= 0, it follows that there exists ϕ0 ∈ D(Ω) such
that, for each ω ∈ O,

∫
O

|ξ(ω,ϕ0)|2 dP (ω) �= 0. By the same arguments and notations as in Theorem 3.2, we have that ξ �= 0
implies that ξ(·,ϕεn (· − tn)|K ) does not tend to zero in the sense of L2-convergence as n → ∞.
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The set Ω2 contains tn , n ∈ N. Now, from

sup
t∈Ω2

∫
O

∣∣ξ(
ω,ϕε(· − t)

)∣∣2
dP (ω) �= o(1) as ε → 0,

it follows that u1ε − u2ε /∈ N (Ω, L p(O)). This proves the theorem. �
Example 3.1. Consider uε(ω, x) = 1

ε2 ϕ2( x
ε )X(ω), x ∈ Ω , ε ∈ I , where X(ω) denotes a random variable, resp., a random

variable in L p(O), and ϕ is the mollifier. This element is not obtained by the embedding of an element of L(D(Ω), L(O)),
resp., of L(D(Ω), L p(O)). The associated element in L(D(Ω), L(O)) would be δ2(x)X(ω), but we know that δ2 does not
exist in D′(Ω).

4. [L2(O)] GFA-stochastic processes

4.1. Expectation and correlation

Let u ∈ G(Ω, [L2
ε(O)]). The expectation of u is an element m of G(Ω) whose representative is

muε (x) = E
(
uε(ω, x)

) =
∫
O

uε(ω, x)dPε(ω), x ∈ Ω, ε ∈ I.

The correlation function of u is an element B of G(Ω × Ω) with a representative

Buε (x, y) = E
(
uε(ω, x)uε(ω, y)

) =
∫
O

uε(ω, x)uε(ω, y)dPε(ω), x, y ∈ Ω, ε ∈ I.

Let ξ ∈ L(D(Ω), L p(O)) and uε(ω, x) be defined by (2). Then the representatives of the expectation muε and the correlation
function Buε , as well as the process uε itself, depend on the choice of the mollifier function. However, they define elements
of the generalized function algebra which are equal in distributional sense. This is the consequence of the continuity of
ξ(·,·) with respect to the second variable, in the sens of L p-norm.

Concerning partial derivatives, for u ∈ G(Ω, [L2
ε(O)]) and α,k ∈ N

d
0, we have

∂αmuε (x) = m∂αuε (x), x ∈ Ω, ε ∈ I, and

∂k
x ∂k

y Buε (x, y) = B∂kuε
(x, y), x, y ∈ Ω, ε ∈ I.

From
n∑

i, j=1

Buε (xi − x̃i, x j − x̃ j)zi z j =
n∑

i, j=1

E
(
uε(ω, xi − x̃i)uε(ω, x j − x̃ j)

)
zi z j

= E

(∣∣∣∣∣
n∑

j=1

uε(ω, x j − x̃ j)z j

∣∣∣∣∣
2)

� 0, ε ∈ I, xi, x̃i ∈ Ω, zi ∈ C, i ∈ N,

it follows that the correlation function Buε is positive definite for every ε ∈ I . Furthermore, the covariance function

Cuε (x, y) = Buε (x, y) − muε (x)muε (y), x, y ∈ Ω, ε ∈ I,

is positive definite for every ε ∈ I . Indeed, since muε = (E(uε(ω, ·)), we have

n∑
i, j=1

Cuε (xi − x̃i, x j − x̃ j)zi z j = E

(∣∣∣∣∣
n∑

j=1

(
uε(ω, x j − x̃ j) − muε (x j − x̃ j)

)
z j

∣∣∣∣∣
2)

� 0.

Example 4.1. Let Xt(ω), t ∈ Ω , ω ∈ O, be an L2(O) GFA-stochastic process with smooth sample functions. The corresponding
element of G(Ω, L2(O)), Cd(Xt) = u has a representative uε(ω, t) = Xt(ω), t ∈ Ω , ω ∈ O, ε ∈ I , as well as the following one:

(
uε(t)

)
ε

= (
κε(t)Xt ∗ ϕε(t)

)
ε

=
(∫

Ω

(
κε(s)Xs

)
ϕε(s − t)ds,

)
ε

, t ∈ Ω, (3)

where (ϕε)ε denotes the net of mollifiers and (κε)ε is the net introduced in the previous section.
If Xt(ω), t ∈ Ω , ω ∈ O, is an L2(O) GFA-stochastic process with continuous sample functions, with expectation m(t) and

correlation function B(t, s), then for Cd(Xt) = u ∈ G(Ω, L2(O)) defined by its representative (3) we have
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muε (x) = (κεm)(x) ∗ ϕε(x), x ∈ Ω, ε ∈ I,

Buε (x, y) = κε(x)κε(y)B(x, y) ∗ ϕε(x)ϕε(y), x, y ∈ Ω, ε ∈ I,

and [(muε )ε] ∈ G(Ω), [(Buε )ε] ∈ G(Ω × Ω). Indeed,

muε (x) = E
(
uε(ω, x)

) =
∫
O

uε(ω, x)dP (ω) =
∫
O

(∫
Ω

κε(s)Xs(ω)ϕε(s − x)ds

)
dP (ω)

=
∫
Ω

κε(s)ϕε(s − x)

(∫
O

Xs(ω)dP (ω)

)
ds =

∫
Ω

κε(s)ϕε(s − x)m(s)ds = κεm)(x) ∗ ϕε(x).

For Buε (x, y) the proof is similar. Note that since B(x, y) is positive definite, its Fourier transform B̂(ξ,η) is a posi-
tive distribution. Also, ϕε is positive definite by construction. Thus, B(x, y) ∗ ϕε(x)ϕε(y) has the Fourier transformation
B̂(ξ,η)ϕ̂ε(ξ)ϕ̂ε(η) � 0 and therefore, Buε (x, y) is positive definite.

Remark. In [16] the notions of positive definiteness and weak positive definiteness of Colombeau functions are considered,
and it is proved that a distribution f ∈ D′(Ω) is positive definite if and only if the corresponding Colombeau generalized
function Cd( f ) is weakly positive definite. However, we assumed that the net of mollifier functions ϕε , ε ∈ I is positive
definite (which is not a strict restriction) in order to obtain positive definiteness in the strict sense of the correlation function
of GFA-stochastic processes. This is important in order to have a correspondence between positive definite functions and
Fourier transforms of positive tempered distributions (Bochner’s theorem) which will implicitly be used in Theorem 4.3,
while for weak positivity and weak positive definiteness it is still an open question (cf. [16]). Here, with the embedding
f �→ κε f ∗ ϕε we have that f is a positive definite distribution (i.e. 〈 f , θ ∗ θ∗〉 � 0, θ∗(x) = θ(−x), for all θ ∈ D(Ω)) if
and only if fε = κε f ∗ ϕε is a positive definite function (i.e.

∑n
i, j=1 fε(xi − yi)zi z j � 0 for all n ∈ N, x1, y1, . . . , xn, yn ∈ Ω ,

z1, . . . , zn ∈ C) for each ε ∈ I .

4.2. Gaussian [L2] GFA-stochastic processes

We keep in mind Gaussian generalized stochastic processes, and wish to define Gaussian GFA-stochastic processes.

Definition 4.1. Let u ∈ G(Ω, [L2
ε(O)]). It is said that u is a Gaussian GFA-stochastic processes, if there exists a representative

(uε)ε and ε0 > 0 such that for every ε < ε0, uε is a classical Gaussian stochastic process i.e. that for every ε < ε0 and
arbitrary x1, . . . , xn ∈ R, the probability that the random variable

Xε = (
uε(x1,ω), . . . , uε(xn,ω)

)
belongs to a Borel set B ⊂ R

n is

P (Xε ∈ B) =
∫
B

(
det Aε

(2π)n

)1/2

exp

(
−1

2
〈Aεt, t〉

)
dt, ε < ε0,

where A stands for a non-degenerate positive definite matrix, and

〈Aεt, t〉 =
n∑

i=1

n∑
j=1

aijεtit j, ε < ε0.

We will call (uε)ε a Gaussian representative of u. Also, instead of ε < ε0 we will write ε ∈ I .

Theorem 4.1. Let u be a Gaussian GFA-stochastic processes with Gaussian representative (uε)ε and (Buε )ε be a representative of its
correlation function. Then, for all x1, . . . , xn ∈ R,

Aε = (
Buε (xi, x j)

)−1
, ε ∈ I.

Proof. Fix xi, x j ∈ Ω . We have that

bi, j,ε = Buε (xi, x j) = E
(
uε(xi,ω)uε(x j,ω)

)
, xi, x j ∈ Ω, ε ∈ I.

To prove the assertion, we will calculate E(uε(xi,ω)uε(x j,ω)), xi, x j ∈ Ω , ε ∈ I , in another way. The random variable
uε(xi)uε(x j) (for fixed ε ∈ I) can be considered as a function of the n-dimensional random variable, whose distribution
is given in Definition 4.1. Therefore (ε ∈ I),

E
(
uε(xi,ω)uε(x j,ω)

) =
(

det Aε

n

)1/2 ∫
tit j exp

(
−1 〈Aεt, t〉

)
dt = tr

(
Eij A−1

ε

)
,

(2π) 2
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where Eij denotes an n ×n-dimensional matrix whose elements all vanish except ei j = 1, satisfying 〈Eijt, t〉 = tit j . This gives
bi, j,ε = tr(Eij A−1

ε ), ε ∈ I , and the proof is completed (cf. [3, p. 249], for explicit calculation). �
Theorem 4.2. Partial derivatives of a Gaussian GFA-stochastic processes are again Gaussian GFA-stochastic processes.

Proof. Let u ∈ G(Ω, [L2
ε(O)]) be a Gaussian GFA-stochastic processes with a Gaussian representative (uε)ε , and let ∂x1 u be

its [L2(O)]-derivative with a representative (∂x1 uε(ω, x))ε . The family Uε = {uε(·, x): x ∈ Ω}, ε ∈ I , is a Gaussian family, and
for x ∈ Ω ,

∂x1 uε(·, x) = lim
h→0

uε(·, (x1 + h, . . . , xn)) − uε(·, x)

h
, ε ∈ I,

in the sense of L2
ε(O)-convergence. So we observe the linear closure in the sense of L2-convergence of the Gaussian fam-

ily Uε , denoted by U ε . The family {∂x1 uε(·, x): x ∈ Ω} is a subfamily of U ε , and therefore a Gaussian family as well. The
proof for (∂αuε)ε follows easily. �

The following theorem gives the complete characterization of Gaussian GFA-stochastic processes.

Theorem 4.3. For given m = [(mε(x))ε] ∈ G(Ω) and B = [(Bε(x, y))ε] ∈ G(Ω × Ω) such that the covariance function C =
[(Cε(x, y))ε] ∈ G(Ω × Ω) is positive definite (Cε are positive definite), there exists a Gaussian GFA-stochastic processes u ∈
G(Ω, [L2

ε(O)]) with a Gaussian representative (uε)ε , whose expectation and covariance function are m and C.

Proof. Fix ε ∈ I . For any n ∈ N and arbitrary x1, . . . , xn ∈ Ω, let (ci jε) be a matrix with elements

ci jε = Cε(xi, x j) = Bε(xi, x j) − mε(xi)mε(x j), 1 � i, j � n.

As the covariance function C is positive definite and symmetric, the matrix (ci jε) is a positive definite and symmetric
representative. Thus, for each n ∈ N, we have an n-dimensional Gaussian distribution function, whose expectation and
covariance matrix are mε(x1), . . . ,mε(xn) and (ci jε), respectively. The corresponding characteristic function is given by

(t1, . . . , tn) � exp

(
−1

2

n∑
i, j=1

(
Bε(xi, x j) − mε(xi)mε(x j)

)
tit j + i

n∑
i=1

mε(xi)ti

)
.

For each fixed ε ∈ I , the family of n-dimensional Gaussian distribution functions (as n goes through N) is compatible. This
means that the conditions of the Kolmogorov theorem are satisfied, and there exists a probability space (O,Uε, Pε) and a
real Gaussian stochastic process {Xε(x,ω): x ∈ Ω, ω ∈ O} on it, whose expectation and covariance function are

x � mε(x), (x, y) � Cε(x, y).

The same arguments yield that for every k ∈ N
d
0, |k| > 0,

∂kmε(x) and
∂2k

∂k
x ∂k

y
Cε(x, y)

define a Gaussian stochastic process {Yε,k(x,ω): x ∈ Ω, ω ∈ O} whose expectation and covariance function are exactly the
given ones. Moreover, we have ∂k Xε(x,ω) = Yε,k(x,ω) in the sense of L2

ε(O)-convergence, for every ε ∈ I . This shows that
Xε(x,ω) determines an L2

ε(O) C∞-stochastic process.
Since Bε = B Xε , ε ∈ I , and B = [(Bε(x, y))ε] ∈ G(Ω × Ω) it follows that for any compact set K × K ⊂ Ω × Ω , and any

k ∈ N
d
0, there exists an a > 0, such that

sup
(x,y)∈K×K

∂k
x ∂k

y Bε(x, y) = O
(
ε−a) as ε → 0.

Using

∂k
x ∂k

y B Xε (x, y)|(x,y)=(x,x) = E
(
∂k

x Xε(x,ω)∂k
y Xε(y,ω)

)∣∣
(x,y)=(x,x) =

∫
O

∣∣∂k
x Xε(x,ω)

∣∣2
dPε(ω), ε ∈ I,

we obtain that for every K � Ω and k ∈ N
d
0 there exists a > 0 such that

sup
x∈K

∫
O

∣∣∂k Xε(x,ω)
∣∣2

dPε(ω) = O
(
ε−a) as ε → 0.

Thus we conclude that [(Xε(x,ω))ε] is a Gaussian GFA-stochastic process. �
This leads to:
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Corollary 4.1. Let u ∈ G(Ω, [L2
ε(O)]) be a GFA-stochastic process with expectation m = [(muε (x))ε] ∈ G(Ω) and a correlation func-

tion B = [(Buε (x, y))ε] ∈ G(Ω × Ω). There exists a Gaussian GFA-stochastic process with the given expectation and correlation
function.

Example 4.2. Brownian motion b ∈ G(R, [L2
ε(O)]) is a Gaussian GFA-stochastic process with zero expectation and with

correlation function

Bbε (x, y) = min{s, t} ∗ ϕε(x)ϕε(y) =
∫ ∫

min{s, t}ϕε(s − x)ϕε(t − y)ds dt, x, y ∈ R, ε ∈ I.

Example 4.3. White noise w is in [3] defined as the Gaussian generalized stochastic process with zero expectation and
correlation function B w(φ,ψ) = ∫

φ(s)ψ(s)ds, φ,ψ ∈ D(R). According to the kernel theorem, for a positive definite func-
tional B there exists a unique distribution F ∈ D′(R ⊗ R) such that B(φ,ψ) = 〈F , φψ〉. For white noise this distribution is
F w(x, y) = δ(x − y), x, y ∈ R.

Now, in order to define white noise as a Gaussian GFA-stochastic process in G(R, [L2
ε(O)]), we can use different regular-

izations of the Dirac delta distribution. One possibility (following Example 4.1) is to put

B wε (x, y) = δ(s − t) ∗ ϕε(x)ϕε(y) =
∫

ϕε(s − x)ϕε(s − y)ds, x, y ∈ R, ε ∈ I. (4)

Since B∂bε (x, y) = ∂x∂y Bbε (x, y) = ∂x∂y(min{s, t} ∗ ϕε(x)ϕε(y)) = δ(s − t) ∗ ϕε(x)ϕε(y) = B wε (x, y) and each Gaussian GFA-
stochastic process is uniquely determined with its expectation and correlation, we have that w = ∂xb i.e. white noise is the
distributional derivative of Brownian motion.

Another possibility to regularize δ(x − y) is to put

B̃ wε (x, y) = ϕε(x − y), x, y ∈ R, ε ∈ I, (5)

and thus define white noise as the Gaussian GFA-stochastic process with zero expectation and correlation function B̃ .
It is easy to show that B and B̃ are associated in G(R2), more precisely they both have the distributional shadow δ(x −

y) ∈ D′(R2). Thus, they determine Gaussian GFA-stochastic processes which are associated as elements of G(R, [L2
ε(O)]).

Example 4.4. The Gaussian GFA-stochastic process u ∈ G(R, [L2
ε(O)]) with zero expectation and with correlation function

Buε (x, y) = ϕ2
ε (x − y), x, y ∈ R, ε ∈ I,

is an example of a Gaussian GFA-stochastic process which is not associated with any element of L(D(R), [L2
ε(O)]), i.e. it

does not have a distributional shadow.

4.3. Applications: Gaussian solutions of SPDEs

We give a simple general method of solving SPDEs in the framework of generalized Gaussian stochastic processes. This
method can be applied also in the case of classical stochastic processes. Also, we formulate necessary conditions for the
solvability of a SPDE in the space of Gaussian GFA-stochastic processes.

Let

P (x, D) =
∑

|α|�m

aα(x)
∂α

∂xα
, aα ∈ G(Ω), α ∈ N

d
0, (6)

be a linear differential operator with generalized coefficients. Recall [14], it is given by a representative Pε(x, D) =∑
|α|�m aα,ε(x) ∂α

∂xα , aα,ε ∈ EM(Ω), α ∈ N
d
0, ε ∈ I , and if (aα,ε)ε − (ãα,ε)ε ∈ N (Ω), α ∈ N

d
0, then P̃ε(x, D) = ∑

|α|�m ãα,ε(x) ∂α

∂xα ,
ε ∈ I , determines the same operator P (x, D).

Consider the stochastic differential equation

P (x, D)u(ω, x) = h(ω, x), x ∈ Ω, ω ∈ O, (7)

where h = [(hε)ε] is a Gaussian GFA-stochastic process with expectation mh = [(mhε )ε] and correlation Bh = [(Bhε )ε]. We
interpret Eq. (7) as a family of equations

Pε(x, D)uε(ω, x) = hε(ω, x), x ∈ Ω, ω ∈ O, ε ∈ I, (8)

in EM(Ω, [L2
ε(O)]).

We want to find a solution (uε)ε to (8) so that it is a Gaussian representative of a Gaussian GFA-stochastic process u
which solves (7).

Taking expectation on both sides of (8) we obtain

Pε(x, D)muε (x) = mhε (x), x ∈ Ω, ε ∈ I. (9)
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Now, we multiply (8) by Pε(y, D)uε(ω, y) to have

Pε(x, D)Pε(y, D)uε(ω, x)uε(ω, y) = hε(ω, x)hε(ω, y), x, y ∈ Ω, ω ∈ O, ε ∈ I,

and then take expectation on both sides to obtain

Pε(x, D)Pε(y, D)Buε (x, y) = Bhε (x, y), x, y ∈ Ω, ε ∈ I. (10)

Assuming that Eqs. (9) and (10) have solutions muε and Buε , ε ∈ I , in EM(Ω) and EM(Ω × Ω) respectively, and that Buε is
positive definite, there exists a Gaussian GFA-stochastic process uε determined by muε and Buε .

Example 4.5. Let Ω = R
n . Consider now the equation

P (D)u(ω, x) = h(ω, x), x ∈ Ω, ω ∈ O,

where P (D) is a differential operator with constant coefficients

P (D) =
∑

|α|�m

aα
∂α

∂xα
(11)

and h is a Gaussian generalized functional stochastic process i.e. an element of L(D(Ω), L2(O)) determined by the distribu-
tions mh ∈ D′(Rn) and Bh ∈ D′(R2n). Applying the same method as above we obtain the system of equations

P (D)mu(x) = mh(x), P (Dx)P (D y)Bu(x, y) = Bh(x, y), x, y ∈ R
n.

It is known (see [8]) that there exist distributions mu ∈ D′(Rn) and Bu ∈ D′(R2n) that solve these equations. If Bu is positive
definite in the sense of distributions, we obtain a generalized functional Gaussian stochastic process u with expectation mu
and correlation Bu that solves the initial equation. Using the embedding (2) we obtain the corresponding Gaussian GFA-
stochastic process.

We continue to consider the classical differential operator with constant coefficients given in (11) and its formal Fourier
transformation

P̃ (t) =
∑

|α|�m

aα(−it)α, t ∈ R
n. (12)

We will formulate a necessary condition for the existence of a Gaussian solution of (7). Applying the Fourier transformation
to (10) we obtain

P (ξ)P (η)B̂uε (ξ,η) = B̂hε (ξ,η), ξ,η ∈ Ω, ε ∈ I. (13)

Since Bhε is a correlation function and thus positive definite, B̂hε is a positive distribution for all ε ∈ I . (This means that for
every ε > 0, 〈B̂uε , φ〉 � 0 for all φ ∈ D(R2n) with the property φ � 0.) If there exists a solution Buε , it should also be positive
definite in order to be a well-defined correlation function. Note, in [3] it is proved that if Bu(x, y) is positive definite, then
P (Dx)P (D y)Bu(x, y) is also positive definite. But the converse is generally not true, and this is what we are interested in:
what conditions are necessary to hold for the operator P (D) in relation to Bhε in order that the solution Buε is positive
definite? Assuming that there exists a nonnegative solution B̂uε of (13) it follows: If B̂hε = 0, then P̃ (ξ) P̃ (η) = 0 or B̂uε = 0.
On the other hand if B̂hε > 0 (B̂hε � 0 and B̂hε �= 0), then B̂uε > 0 and P̃ (ξ) P̃ (η) � 0. Thus, it is necessary that{

(ξ,η) ∈ R
2n: B̂hε (ξ,η) = 0

} ⊆ {
(ξ,η) ∈ R

2n: P̃ (ξ) P̃ (η) = 0
} ∪ {

(ξ,η) ∈ R
2n: B̂uε (ξ,η) = 0

}
and {

(ξ,η) ∈ R
2n: B̂hε (ξ,η) > 0

} ⊆ {
(ξ,η) ∈ R

2n: P̃ (ξ) P̃ (η) � 0
} ∩ {

(ξ,η) ∈ R
2n: B̂uε (ξ,η) > 0

}
.

Note that we assume the positivity in a distributional sense; it is known, if a distribution is a continuous function, then this
notion reduces to the usual notion of a positive function.

We summarize the results of these considerations in the following proposition.

Proposition 3. Let Ω = R
n. The SPDE

P (D)u(ω, x) = h(ω, x), x ∈ Ω, ω ∈ O,

where h = [(hε)ε] is a Gaussian GFA-stochastic process with correlation Bh = [(Bhε )ε], and P (D) is a differential operator with
constant coefficients as in (11), has a Gaussian solution u = [(uε)ε] ∈ G(Ω, L2(O)), if the solutions Buε , ε ∈ I , of the differential
equations
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P (Dx)P (D y)Buε (x, y) = Bhε (x, y), x, y ∈ Ω, ε ∈ I,

determine an element [(Buε )ε] ∈ G(Ω × Ω) and moreover for every ε ∈ I , Buε are positive definite.
A necessary condition for the positive definiteness of Buε , ε ∈ I , is that the differential operator P (D) and Bhε , ε ∈ I , satisfy{

(ξ,η) ∈ R
2n: B̂hε (ξ,η) > 0

} ⊆ {
(ξ,η) ∈ R

2n: P̃ (ξ) P̃ (η) � 0
}
,

where P̃ (t), t ∈ R
n, is the formal Fourier transformation of P (D) defined as in (12).

Example 4.6. Consider the equation u′(ω, x) = w(ω, x), where w is the white noise Gaussian GFA-stochastic process defined
in Example 4.3. Then, (9) reduces to m′

uε
(x) = 0, while (10) reduces to ∂x∂y Buε (x, y) = ∫

ϕε(s − x)ϕε(s − y)ds. It was shown
in Example 4.3 that the latter equation has a solution Buε (x, y) = min{x, y} ∗ ϕε(x)ϕε(y), while the first equation has a
solution e.g. muε (x) = 0. (Note, that uniqueness cannot be obtained in this way.) Thus, a solution of u′(ω, x) = w(ω, x) is
u = b, where b is the Brownian motion process from Example 4.3. Applying the Fourier transformation to ∂x∂y Buε (x, y) =
δ(x − y) ∗ ϕε(x)ϕε(y) we obtain

−ξη B̂uε (ξ,η) = δ(ξ + η)ϕ̂ε(ξ)ϕ̂ε(η).

Indeed, we have that the necessary condition:{
(ξ,η) ∈ R

2: ξ = −η
} ⊆ {

(ξ,η) ∈ R
2: ξη � 0

}
is satisfied.

References

[1] S. Albeverio, Z. Haba, F. Russo, A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise, Probab. Theory Related
Fields 121 (3) (2001) 319–366.

[2] J.F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland Math. Stud., vol. 84, North-Holland, Amsterdam, 1984.
[3] I.M. Gel’fand, N.Y. Vilenkin, Generalized Functions, vol. 4, Academic Press, New York, 1964.
[4] M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer, Geometric Theory of Generalized Functions with Applications to General Relativity,

Kluwer, Boston, Dordrecht, London, 2001.
[5] O. Hanš, Measurability of extension of continuous random transforms, Amer. Math. Stat. 30 (1959) 1152–1157.
[6] T. Hida, H.H. Kuo, J. Potthoff, L. Streit, White Noise Analysis, Kluwer, Boston, Dordrecht, London, 1993.
[7] H. Holden, J. Øksendal, T. Uboe, T. Zhang, Stochastic Partial Differential Equations, Birkhäuser, Boston, Basel, Berlin, 1996.
[8] L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 1963.
[9] H. Inaba, B.T. Tapley, Generalized process: A theory and the white Gaussian process, SIAM J. Control 13 (1975) 719–735.

[10] K. Ito, Stationary random distributions, Mem. Coll. Sci. Kyoto Univ. Ser. A 28 (1954) 209–223.
[11] H.H. Kuo, White Noise Distribution Theory, CRC Press, Boca Raton, 1996.
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