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Summary
The flow of natural gas within a gas transmission network is studied with the aim
to optimize such networks. The analysis of real data provides a deeper insight into
the behavior of gas in- and outflow. Several models for describing dependence
between the maximal daily gas flow and the temperature on network exits are
proposed. A modified sigmoidal regression is chosen from the class of parametric
models. As an alternative, a semi-parametric regression model based on penalized
splines is considered. The comparison of models and the forecast of gas loads for
very low temperatures based on both approaches is included. The application of
the obtained results is discussed.

Key words: sigmoidal regression; penalized splines; gas flow; gas transmission net-
works; prediction; optimization.

1 Introduction
Transportation and supply of natural gas is an important topic. We study historical
data of the flow of gas transported in networks in order to support the optimization
of such networks and thus improve the supply of gas. Statistical modeling techniques
enable a reliable and realistic prediction of the future gas flow, and thus the reduction
of operational costs. In particular, the cost of control energy necessary to satisfy peak
demand at low temperatures can be minimized with a good forecast. Furthermore,

1



gas transportation operators are obliged to sustain the supply of gas even during very
cold days. Since there is not much data available for very low temperatures, a good
prediction is crucial for reliable operation.

We fit a parametric as well as a semi-parametric non-linear logistic regression
model and analyze the properties of the gas flow through the pipelines in dependence
of the temperature.

The relationship between gas flow and air temperature is closely related to empir-
ical models for growth data used for modeling trends in data, which are frequently
employed in natural and environmental sciences, and sometimes in social sciences and
economics. Some examples of those models and different applications are explored in,
for example, Jones et al. [2009], Vitezica et al. [2010], Jarrow et al. [2004].

Hellwig [2003], Geiger and Hellwig [2002] and Wagner and Geiger [2005] suggest
the use of sigmoidal growth models for description of typical gas load profiles in vari-
ous economic sectors. An overview of methods useful for understanding the behavior
of gas transport based on those models can be found in Cerbe [2008].

Theoretically, an empirical growth curve is a scatter plot of some measure of the
size of an object against time x. The general assumption is that, apart from random
fluctuation, the underlying growth follows a smooth curve. This theoretical growth
curve is usually assumed to belong to a known parametric family of curves f(x|θ) and
the aim is to estimate the parameters θ. It is important to reduce the complexity of the
growth curve to a small number of parameters so that changing patterns of growth can
be understood in terms of changes in these parameters. Moreover, each growth curve
may be summarized by its parameter estimates as a single low-dimensional multivari-
ate observation, which then may be subject to an analysis of variance or to a regression
or even a correlation analysis.

The same type of models occur when the explanatory variable x is not time but
increasing intensity of some other factor. We observe change, or more precisely, re-
duction of gas consumption with increased outdoor temperatures, and seek a model
with a physical basis and physically interpretable and meaningful parameters. De-
tailed description of growth models can be found in Seber and Wild [2003].

As a more flexible alternative, semi-parametric models can be utilized to tackle
the problem. We choose penalized splines (P-splines), which combine two ideas from
curve fitting: a regression based on a basis of B-splines and a penalty on the regression
coefficients, cf. Wegman and Wright [1983], Eilers and Marx [2010] and Eilers and
Marx [1996]. This approach emphasizes modeling of underlying smooth regression
relationship, and the penalty controls the amount of smoothing.

The paper is organized as follows. Section 2 describes the available data and moti-
vates the choice of the studied models. The parametric approach is presented in Section
3, whereas Section 4 provides details about the application of the P-splines method.
All models are then compared based on several criteria in Section 5. Section 6 explains
several possible applications of the results, and Section 7 concludes the paper.
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2 Data Description and Model Motivation
Data for this study were obtained from measuring stations within the German pipeline
network operated by Open Grid Europe GmbH (OGE), one of the leading German
gas transmission operators. It contains hourly gas flow for the period between January
2004 and June 2009. Mean daily temperatures from the corresponding weather stations
are also provided.

We study the dependence of gas loads and air temperature on all exits along the
pipelines. Typical exits in such networks are public utilities, industrial consumers and
storages, as well as exits on border and regional crossings. Since we want to max-
imize the transportation capacity through the pipelines, we concentrate on the daily
maximum flows ymaxi , i = 1, . . . , n (n = 2005), at each exit, for every exit in the
network.

An important aspect of the study is the forecast of gas loads on exits of the network
at the so-called design temperature. The design temperature is defined as the lowest
temperature at which the gas operator is still obliged to supply gas without failure, and
differs within Germany depending on the climate conditions in different regions. It
usually lies between −12◦C and −16◦C. Such low mean daily temperatures are very
uncommon in Germany, and there is no observed gas flow data available at the design
temperature. For this reason gas operators are forced to use predicted gas loads at the
design temperature, and we investigate several possible models for the forecast.

Based on Cerbe [2008], Hellwig [2003], Geiger and Hellwig [2002] and Wagner
and Geiger [2005], as well as on the German Energy Law, gas operators in Germany
agreed to use a non-linear regression of sigmoidal type for the prediction of gas flow
at the design temperature (cf. Agreement [2008]). The document describes the model
given by the sigmoidal mean function with a weighted four-day mean temperature as
an explanatory variable (see model equations (1) and (2) in Section 3), which should
be used to predict maximum gas loads at the design temperature. The physical prop-
erties of gas imply the choice of the model. The weighted four-day mean temperature
is motivated by the fact that typical buildings in Germany accumulate the heat up to
85 hours, and Cerbe [2008] suggests the weights as in (3). Agreement [2008] also
contains starting values necessary for the non-linear regression. We remark that one of
the parameters of the sigmoidal model as given in Agreement [2008] is the horizontal
upper asymptote of gas loads, which occur at low temperatures. In this work we sug-
gest the generalization of the upper asymptote, as we expect increased and not constant
gas consumption as temperatures get lower and fall down to the design temperature, as
well as a flexible weighting of the temperature of the last four days. Alternatively, we
propose a local smoothing approach and utilize the P-splines models for the prediction.

In what follows, we study the standardized daily maximum flows yi = ymaxi /ȳ,
where ȳ denotes the empirical mean of all maximal daily gas flows at a specific mea-
suring station.
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3 Parametric Models
In the parametric approach, the assumption is that the growth curve belongs to a known
parametric family of curves. We observe change, or more precisely, reduction of gas
consumption with increased outdoor temperatures, and seek a model with physically
meaningful parameters, as the physical interpretability of parameters in the model mo-
tivates the choice of the growth curve.

In our study, we concentrate on the data observed at one specific station. Based
on the Agreement [2008] between gas companies, we take the following sigmoidal
growth model to describe the dependence of gas consumption on temperature:

yi = S(ti|θ) + εi . (1)

Here yi denotes the standardized daily maximum flow and the corresponding mean
function parameterized in θ = (θ1, θ2, θ3, θ4) is given by

S(ti|θ) = θ4 +
θ1 − θ4

1 +

(
θ2

ti − 40◦C

)θ3 , (2)

and also depends on the predictor ti, which stands for the weighted four-day mean
temperature with weights

w = (8, 4, 2, 1)/15 , (3)

i.e.

ti =
3∑
j=0

wjtji , (4)

where t0i, t1i, t2i and t3i are the temperatures in ◦C of the last four days. Finally, εi is
an error term reflecting zero mean and constant variance σ2.

Based on the physical properties of gas, Geiger and Hellwig [2002] and Cerbe
[2008] introduce this kind of models for the description of typical gas loads in de-
pendence of air temperature. According to the description of the log-logistic model
provided by Ritz and Streibig [2008], the four parameters in model (2) have the fol-
lowing meaning: θ1 and θ4 are the upper and lower horizontal asymptotes, and the
other two parameters describe the shape of the decrease of the (logistic like) curve.
More precisely, θ2 is the inflection point of the curve, i.e. the point around it is sym-
metric on logarithmic temperature axis, and the parameter θ3 is proportional to the
slope at ti − 40◦C equals to θ2. This follows from the identity(

θ2

ti − 40◦C

)θ3
= exp

(
− θ3

(
log(ti − 40◦C)− log θ2

))
.

Similarly, the properties of logistic growth models, as explained in Seber and Wild
[2003], imply that θ3 acts as a scale parameters on ti − 40◦C, thus influencing the
growth rate.
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From the point of view of the energy industry, Geiger and Hellwig [2002] discuss
the meaning of parameters in the following way: θ4 describes the constant share of
energy for warm water supply and process energy, while the difference θ1−θ4 explains
extreme daily gas consumption on cold days. θ2 indicates the beginning of the heating
period, i.e. the change point from the constant gas loads in summer to the increasing
consumption in the heating period at approximately 15◦C − 18◦C, and θ3 measures
flexibly the dependance in the heating period.

Geiger and Hellwig [2002] note that apart from the choice of the appropriate mean
function S(ti|θ), the adequate aggregation of mean daily temperatures to be included
in the explanatory variable ti is essential. Physical properties of buildings play an
important role here. The four-day mean temperature is motivated by the fact that typ-
ical buildings in Germany accumulate the heat up to 85 hours, and the use of weights
as in (3) is suggested. The weights given by (3) are obtained from the standardized
geometric series with basis 2 applied to the temperature of the last four days, i.e.

ti =
t0i + t1i

2
+ t2i

4
+ t3i

8

1 + 1
2

+ 1
4

+ 1
8

=
3∑
j=0

wjtji .

Based on these facts, German gas companies signed the Agreement [2008], which
regulates different issues related to gas transmission within the German network, and
agreed to use the sigmoidal function S(ti|θ) defined in (2) with the explanatory vari-
able ti given by (3) and (4) to describe the dependance of gas loads on air temperature
and to forecast the gas consumption at the design temperature.

The starting values for the iteration necessary to calculate the least squares esti-
mates, as provided in the Agreement [2008], are given in the Table 1. As the param-
eters in the mean function of the non-linear regression model have physical interpre-
tation, the starting values may be read from a plot of the data. According to Seber
and Wild [2003], the crude initial estimates of θ1 and θ4 are calculated from the scatter
plot, while θ2 and θ3 can be obtained using the linearization

y∗i = log

(
θ1 − θ4

S(ti|θ)− θ4

− 1

)
= −θ3 log(40◦C− ti) + θ3 log(−θ2) .

The substitution

α = θ3 log(−θ2) ,

β = −θ3 ,

yields
y∗i = α + β log(40◦C− ti) ,

which enables an easy calculation of θ2 and θ3.
For repeated use of the same non-linear regression model some automated way of

providing starting values is very important. One possibility is to construct a self-starter
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function. Self-starter functions substitute a manual search for starting values and are
specific for a given mean function. They calculate the initial values for a given data set
and make any further analysis based on the given model considerably easier.

We construct a self-starter function for the mean function (2) and calculate starting
values for the given data set. For the resulting starting values, given in Table 1, the
model fit is identical to the model fit obtained using the starting values supplied by
another methods. We note here that the estimation algorithm based on the self-starter
has a better convergence rate. The self-starter function is implemented in R (for the
manual see R Development Core Team [2008]), based on the procedure suggested by
Ritz and Streibig [2008]. We refer to Table 1 for both sets of starting values and for
the estimated parameters and their standard errors when fitting model (2).

Table 1: Initial values (A, SS), least squares estimates (LSE) and standard errors (SE)
of the parameters in the sigmoidal model (2).

Model (2) θ1 θ2 θ3 θ4

Agreement (A) 2.509 −34.721 5.816 0.121
Self-Starter (SS) 2.243 −34.345 6.884 0.447
LSE 2.033 −32.647 6.664 0.447
SE (0.032) (0.214) (0.218) (0.009)

In Figure 1 we show the model fitted to data describing the typical gas outflow for
public utilities, as well as the curves corresponding to both sets of starting values (de-
noted by A and SS) given in Table 1. The plot suggests that the considered sigmoidal
model (2) (denoted by M) reproduces the gross characteristics of the gas flow well,
though it obviously underestimates the mean flow for low temperatures.

The value of the Akaike Information Criterion (AIC) of this model is 31046.8.
Here and in what follows we use

AIC = n log 1
n

SSE(θ̂) + 2p ,

with the minimized sum of squared errors

SSE(θ̂) =
n∑
i=1

(yi − S(ti|θ̂))2 ,

and where p denotes the number of parameters in the mean model.
The next step is to extend model (2) with the aim to include an additional predictor,

which describes the effect of weekend and holidays on the gas flow. To this end, we
introduce an indicator variable di. It indicates whether the i-th gas load is observed on
a working day or not. So we additionally include

di =

{
1 if day i is a working day,
0 if day i is a holiday or at weekends,

(5)
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Figure 1: Fitted sigmoidal model (M) given by (2) (solid line) and curves based on
starting values from the self-starter function (SS, dashed line) or from Agreement (A,
dotted line). Data points represent the maximal daily outflows at a public utility de-
pending on the four-day mean air temperatures.

in model (2) and obtain

S(ti|θ) = θ4 +
θ1 − θ4

1 +

(
θ2

ti − 40◦C
+ diθ5

)θ3 . (6)

It is interesting to note that the AIC drops down to 30800.0 and that the estimate of this
factor is θ̂5 = −0.054 (0.003) generally indicating larger gas loads on working days.

To investigate the influence of the temperature more precisely, we extend the sig-
moidal model further. Instead of using the four-day mean temperature with fixed
weights w given by (3) as in the model defined by growth function (2), we allow
for flexible temperature parameters. However, we stick to the temperature of the last
four days, and consider two models. In terms of the sigmoidal function, we have

S(ti|θ) = θ4 +
θ1 − θ4

1 +

(
θ2

8
15
t0i + θ21t1i + θ22t2i + θ23t3i − 40◦C

+ diθ5

)θ3 , (7)
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or

S(ti|θ) = θ4 +
θ1 − θ4

1+

(
θ20

t0i−40◦C
+

θ21

t1i−40◦C
+

θ22

t2i−40◦C
+

θ23

t3i−40◦C
+diθ5

)θ3 . (8)

With this approach we want to find out what the coefficients of the optimal pre-
dictor for this data set are, i.e. what are the optimal weights for the four temperatures
(today’s, yesterday’s, two and three days ago). As mentioned before, physical proper-
ties of gas imply that the gas flow depends not only on the today’s temperature, but the
temperature of a few previous days influences the flow as well. In these two models,
the temperature coefficients are optimally estimated from data, and we analyze how
the temperature effects the predicted flow. We emphasize here that the given weights
w as in (3) imply that we already know the exact relationship between the temperatures
and the gas flow, which is not true. So we try to estimate this relationship.

Model (7) can be seen as a direct extension and a flexible counterpart of model (2),
with working day indicator and θ20 = w0 = 8/15. Model (8) enables an assessment of
the importance of the flexible parametrization. This motivates the choice of the starting
values for both models. In the case of model (7), we take

θ2j = wj , j = 1, 2, 3,

as the initial values for the new parameters and for model (8) we use the starting value
θ2 = −34.345 from model (2) and split it up into

θ2j = wjθ2 , j = 0, 1, 2, 3 .

Initializing θ5 = 0 implies that weekdays do not influence the gas flow. However,
as shown in Table 2 the effect of working days on gas consumption is significantly
relevant under both models. Starting values, parameter estimates and their standard
errors for models (7) and (8) are shown in Table 2.

The results indicate that the today’s temperature and a sort of difference between
the temperatures prevailing three and two days ago seem to be particularly relevant.
The AIC values of 30687.6 for model (7) and 30688.4 for model (8) indicate an enor-
mous improvement of the fit, but do not give a clear preference to model (7) or (8).

All models considered so far reproduce the gross characteristics of the gas flow
well, though they obviously underestimate the mean responses for low temperatures,
mainly because of the horizontal upper asymptote. This motivates the generalization
of the upper asymptote by allowing an extra slope parameter and leads us to the so-
called Brain-Cousens model (BC-model), convenient for describing the phenomenon
called hormesis.

First, we examine the influence of the slope parameter in the case of the model

8



Table 2: Initial values (SS), least squares estimates (LSE) and standard errors (SE) of
the parameters in models (7) and (8), both allowing for flexible weights.

Model (7) θ1 θ2 θ21 θ22 θ23 θ3 θ4 θ5

SS 2.243 −34.345 0.266 0.133 0.067 6.884 0.448 0
LSE 2.025 −35.047 0.179 −0.267 0.345 8.674 0.433 −0.040
SE (0.028) (0.296) (0.069) (0.069) (0.042) (0.686) (0.010) (0.004)

Model (8) θ1 θ20 θ21 θ22 θ23 θ3 θ4 θ5

SS 2.243 −18.316 −9.160 −4.578 −2.291 6.884 0.447 0
LSE 2.047 −24.671 −4.753 9.033 −13.502 6.397 0.445 −0.054
SE (0.029) (1.386) (2.593) (2.547) (1.344) (0.190) (0.009) (0.003)

with fixed temperature parameters. The simple BC-model is defined by

S(ti|θ) = θ4 +

θ1 + θ6

(
θ2

ti − 40◦C

)
− θ4

1 +

(
θ2

ti − 40◦C
+ diθ5

)θ3 . (9)

As we already know that flexible temperature weights yield better results, we are
interested in the BC-extension of the model given by (8), which has the form

S(ti|θ) = θ4+

θ1+θ6

(
θ20

t0i−40◦C
+

θ21

t1i−40◦C
+

θ22

t2i−40◦C
+

θ23

t3i−40◦C

)
−θ4

1+

(
θ20

t0i−40◦C
+

θ21

t1i−40◦C
+

θ22

t2i−40◦C
+

θ23

t3i−40◦C
+diθ5

)θ3 . (10)

The results of both fits are given in Table 3. Again, the initial value of 0 for θ6 im-
plies that the upper asymptote is a horizontal line. The parameters change somewhat,
and the new slope parameter in the model is significant. Thus, the upper asymptote
is a line with negative slope θ6. For low temperatures, the modified upper asymptote
in the BC-model implies the increase of the mean gas flow for approximately 2 times
scaled ȳ when the temperature decreases for 1◦C. Yesterday’s temperature seems to be
the least relevant of all observed temperatures and the difference between temperatures
three and two days ago seems to be important again. As the AIC value of model (9)
we get 30764.8 (compare with 30800.0, the AIC value of model (6) with horizontal
asymptote). The lower AIC value of 30655.0 characterizes model (10), and indicates
the most adequate parametric model.

All parametric models are fitted in R using the function nls().

9



Table 3: Initial values (SS), least squares estimates (LSE) and standard errors (SE) of
the parameters in the simple BC-model (9) and under its extended version allowing for
flexible weights (10).

Model (9) θ1 θ2 θ3 θ4 θ5 θ6
SS 2.243 −34.345 6.884 0.447 0 0
LSE 3.232 −29.603 6.071 0.514 −0.100 −1.914
SE (0.107) (0.537) (0.302) (0.018) (0.013) (0.189)

Model (10) θ1 θ20 θ21 θ22 θ23 θ3 θ4 θ5 θ6
SS 2.243 −18.316 −9.160 −4.578 −2.291 6.884 0.447 0 0
LSE 3.226 −21.540 −4.184 7.662 −11.640 6.074 0.511 −0.097 −1.883
SE (0.112) (1.255) (2.253) (2.215) (1.185) (0.296) (0.017) (0.013) (0.197)

4 Semi-Paramteric Models
The nuances missed by the sigmoidal models as well as the numerical sensibility of the
BC-models motivate the search for an alternative model. As one possibility, Mirkov
et al. [2010] suggest the use of the FlexMix approach introduced in Leisch [2004],
which offers a framework for flexible fitting of finite mixtures of (generalized) linear
regression models. This approach improves the fit for low temperatures, but the ap-
proximation of our non-linear models by polynomials is unstable. In our opinion, the
FlexMix approach would offer better results, if the method would be generalized to
mixtures of sigmoidal models. Another possibility is to use semi-parametric models,
such as locally weighted regression (LOWESS cf. Cleveland [1979]) or spline models.
Unfortunately, LOWESS models are not suitable for prediction. More about general
splines theory can be found e.g. in De Boor [1990], Hämmerlin and Hoffmann [1994]
or Powell [1991]. Many authors propose some variant of spline regression for this kind
of problems, see e.g. Jones et al. [2009], Vitezica et al. [2010], Jarrow et al. [2004],
Mackenzie et al. [2005], Cadorso-Suárez et al. [2010], Riedel and Imre [1993].

We choose the penalized splines approach, based on Wegman and Wright [1983],
Eilers and Marx [1996] and Eilers and Marx [2010]. Simplicity and flexibility of
the method motivate the choice. The advantage of P-splines over B-splines is easy
control of smoothness as well as the simple way to handle knots, i.e. their number
and their positions. As Jarrow et al. [2004] emphasize, another advantage of the P-
splines method is that knots can be chosen automatically. The number of knots should
be sufficiently large (at least 8), to accommodate the non-linearity of the underlying
data, but a larger number of knots does not cause over-fitting provided the smoothing
parameter is suitably chosen.

We use the following model to describe the dependence of the standardized maxi-
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mal daily gas loads yi on temperature ti:

yi = S∆(ti) + εi , (11)

where yi = ymaxi /ȳ, and ȳ is the empirical mean of all maximal daily gas flows at a
particular node of the network and ti stands for the weighted four-day mean tempera-
ture with the weights w given in (3). The function S∆(t) is the linear combination of
basis functions Bj, j = 1, . . . ,m, on the mesh ∆, given by

S∆(ti) =
m∑
j=1

ajBj(ti) , (12)

and εi, i = 1, . . . , n, are random noise terms reflecting zero mean and constant vari-
ance. Bj are basis functions of the B-spline of degree q, and the mesh ∆ is an equidis-
tant grid over m− q segments, i.e. with m− q + 1 inner knots.

If we introduce a smoothing penalty λ, then instead of minimizing a least squares
criterion like

n∑
i=1

(
yi −

m∑
j=1

ajBj(ti)

)2

,

the objective function to be minimized is the penalized residual sum of squares

n∑
i=1

(
yi −

m∑
j=1

ajBj(ti)

)2

+ λ
m∑

j=k+1

(δkaj)
2 , (13)

where δk denotes the k-th order finite differences of the coefficients of the correspond-
ing B-splines. In fact, δk is a discrete approximation of the k-th derivative of S∆,
usually used in the smoothing splines approach.

Minimizing (13) is equivalent to solving

B>y = (B>B + λD>k Dk)a ,

where Dk is the matrix representation of the difference operator δk. The elements
of the matrix B are bij = Bj(ti), and the vector y consists of the responses yi, for
i = 1, . . . , n, and j = 1, . . . ,m. Obviously, a is the vector of the coefficients aj .

Note, when λ = 0, we have the standard linear regression with a B-spline basis. In
that case the fitted curve is over-fitting the data, giving a result with too many fluctua-
tions. By increasing λ the smoothness is tuned. In the limit of a very large λ a linear
or quadratic fit (depending on the degree of the basis function) is obtained.

Now that we can control the smoothness of the fitted curve with λ, we want to
choose its value so that the AIC of the model is minimal. In the case of P-splines,
p denotes the effective dimension of the vector of parameters, which can be approxi-
mated by the trace of the hat matrix H . The effective dimension provides an intuitive

11



measure for the complexity of a P-spline fit that appropriately accounts for the effec-
tive dimensionality reduction induced by the penalty (cf. Cadorso-Suárez et al. [2010]).
Since H , with the diagonal elements hii, can be expressed as

H = B(B>B + λD>k Dk)B
> ,

we can easily calculate

p = tr(H) =
n∑
i=1

hii .

As an estimate σ̂2 of the variance for the optimal λ, Eilers and Marx [1996] suggest to
use

σ̂2 =
1

n− p

n∑
i=1

(
yi − Ŝ∆(ti)

)2

.
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Figure 2: Penalized splines regression given by model (12) and (14), i.e. without (left)
and with working day indicator (right), respectively. Data points illustrate the maximal
daily outflow at a public utility in dependence of the four-day mean air temperature.
The position of the inner knots, based on cubic B-splines on the mesh with 10 segments
and the second order penalty λ = 100.4 = 2.51 is also shown. The effect of working
(W) days (solid line) and holidays (H) and weekends (dashed line) from the model
defined by (14) is obvious.

If we further include the predictor di in our model, then model (12) becomes

S∆(ti) =
m∑
j=1

ajBj(ti) + am+1di . (14)

12



With the smoothing penalty λ we want to minimize

n∑
i=1

(
yi −

m∑
j=1

ajBj(ti)− am+1di

)2

+ λ
m∑

j=k+1

(δkaj)
2 . (15)

In a matrix form, the optimality condition for (15) becomes

C>y = (C>C + λD>k Dk)ã ,

where Dk is the matrix representation of the difference operator δk and y are the stan-
dardized responses. The elements of the matrix C are cij , where

cij =

{
bij for i = 1, . . . , n, j = 1, . . . ,m,

di for i = 1, . . . , n, j = m+ 1,

and ã is the vector of regression coefficients aj , j = 1, . . . ,m+ 1.
Figure 2 (left) shows the model fit and the position of the inner knots, based on

cubic B-splines on the mesh with 10 segments and the second order penalty λ =
100.4 = 2.51. The AIC value of 30993.5 implies much better fit than the corresponding
parametric model (6). In the same setting, the model which includes the working day
indicator, with the AIC value of 30808.9, is displayed in Figure 2 (right). The upper
and lower curves show the fit for working days (W) and weekends and holidays (H),
respectively.

We note here that P-splines allow straightforward interpolation and extrapolation.
When extrapolating, the B-spline coefficients form a polynomial sequence of degree
k − 1. Thus, the forecast values depend critically on the order of penalty k.

Furthermore, since the forecast includes the level of uncertainty described by the
confidence or prediction intervals, the assumption about the distribution of the error
terms plays here an important role. P-splines can be applied both to normal and non-
normal data, and we note that considerations included here assume the Gaussian dis-
tribution. In particular, the calculation of the AIC and the estimation of the model
parameters is influenced by this assumption. Alternatively, the bootstrap approach for
interval estimation and some other model selection criterion, e.g. Bayesian information
criterion (BIC) could be used.

5 Comparison of Models
After presenting several different models appropriate for this kind of data, we would
like to compare the goodness of fit of those models.

Figure 3 (left) illustrates the difference between the fit of the sigmoidal model
(6) and the simple BC-model (9) in case of working days. For temperatures above
0◦C the fits are almost identical, but for temperatures below 0◦C, the modified upper

13
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Figure 3: Fitted sigmoidal (S) model (solid line) vs. simple BC-model (dashed line)
(left) and BC-model (dashed line) vs. P-splines (solid line) fit (right) for working days.
Notice the different behavior of the models for cold temperatures. Data points illustrate
the maximal daily outflow on working days at a public utility in dependence of the
four-day mean air temperature.

asymptote of the BC-model implies a higher mean gas flow than the other sigmoidal
models. Due to the local smoothing methodology, the P-splines model displays even
higher consumption of gas for low temperatures. This behavior can be clearly seen in
Figure 3 (right), and will be even more important for forecast of gas load at the design
temperature.

As model selection criterion we use the value of the AIC. A difference of more
than 10 is required in order to definitely prefer one model over another model (cf. Ritz
and Streibig [2008]). Table 4 gives AIC values of all considered models.

Obviously, extensions to the original parametric model (2) improve the AIC value
gradually. A further explanatory indicator di and estimated weights in the tempera-
ture effect both improve the model’s AIC values for 246.8 and 359.5 or 358.4 units,
respectively. Note that both models with estimated temperature weights have better
AIC values than that based on the four-day mean temperature. We cannot prefer any
of the model (7) or (8) since their AIC values are pretty close. Eventually, we quantify
the effect of the slope of the upper asymptote. The AIC of the complex BC-model
(10) is 33.4 units less than that of the model (8), indicating that the fit of the complex
BC-model is the best among all parametric models.

In the case of semi-parametric models, the initial model based on P-splines given
by (12) yields an AIC value which is 53.3 units less than that of the simplest sigmoidal
model (2). Including the effect of weekdays in the model improves the fit also in the

14



Table 4: Comparison of AIC values of the models considered.

Model AIC
(2) 31046.8
(6) 30800.0
(7) 30687.6
(8) 30688.4
(9) 30764.8

(10) 30655.0
(12) 30993.5
(14) 30808.9

semi-parametric case. The difference of 184.6 units between models (12) and (14) is
somewhat less than in the parametric case, but the result is very promising especially
keeping in mind the prediction of gas loads for low temperatures.

6 Application of Modeling Results
The main purpose of the presented models is a reliable forecast of gas loads at the
design temperature, in order to sustain the supply of gas without failure. The models
given by (10) and (14) in Sections 3 and 4 are utilized for the prediction of gas loads
at the design temperature. Recall, the design temperature in Germany lies between
−12◦C and −16◦C, depending on the climate conditions in the region. As such low
mean daily temperatures are very uncommon in Germany, there is no gas flow data
available at the design temperature, and gas operators like OGE use the predicted gas
loads at the design temperature for different purposes in their daily business.

The predicted values based on the BC-model are obtained using the predict
method in R, as described in Ritz and Streibig [2008]. P-splines allow straightforward
smooth extrapolation, and we exploit this property to forecast gas loads at the design
temperature. The second order penalty implies the extrapolation by a linear sequence,
implying that the gas consumption is increasing at the constant rate as the temperature
decreases, cf. Currie et al. [2004] or Eilers and Marx [2010].

Since the design temperature is outside of the domain of the observed predictor
variable, we create a new data frame to determine the predicted gas loads. To this end,
we generate a regular grid of four-day mean temperatures t̃k starting from the lowest
possible design temperature, i.e. from −16◦C, and go up to 30◦C with step size 1◦C.
Based on the new data and the fitted models (10), and (14), the predictions ỹk = Ŝ(t̃k)
are calculated.

Figure 4 illustrates the prediction based on the BC-model and on the P-splines
regression. At the design temperature of −12◦C the predicted gas loads on working
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Figure 4: Fitted models (solid lines) and predictions (dotted lines) for working days
based on the BC- and on a P-splines model. Data points show the maximal daily
outflow on working days at a public utility in dependence of the four-day mean air
temperature.

days based on models (9) and (14) are 39 and 43 MWh/h, respectively.
Figure 5 (left) represents the predicted values for working days based on the BC-

model (9), and the corresponding (pointwise) 95% prediction intervals. The construc-
tion of the band is based on the additional assumption of Gaussian distributed re-
sponses for convenience and utilizes the delta method to obtain approximations of the
variances of the raw residuals. Note here that it is the estimated variance of the re-
sponses and not the approximative variance of the fitted values that makes the variance
of the residuals. Because of this, the prediction intervals have very similar widths
over the entire range of four-day mean temperature values. Further methods for con-
structing prediction intervals for non-linear regression can be found in Gauchi et al.
[2010]. In the case of P-splines, the Bayesian estimate of the covariance matrix is used
to construct the prediction band. The fitted P-splines model (14) for working days
together with the corresponding 95% prediction intervals is shown in Figure 5 (right).
As already mentioned, in this particular case prediction bands are constructed under
the additional assumption of normally distributed error terms but it could be done with
other distributions also.

To ensure the reliable operation of gas transmission networks, gas operators like
OGE use this kind of statistical models and the prediction based on them to determine
technically available transportation capacities on entries, and to validate gas network

16
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Figure 5: Fitted (solid line) and extrapolated (dotted line) gas consumption for work-
ing days based on the BC model (left) and on P-splines (right) with corresponding
95% prediction intervals (dashed lines). Data points correspond to the maximal daily
outflow on working days at a public utility in dependence of the four-day mean air
temperature.

nominations. A nomination describes the balanced in- and outflow of gas at entries
and exits of the network, and needs to be feasible for every temperature, including
the design temperature. A nomination is said to be feasible, or validated, if for the
given inflow and outflow allocation, a flow of gas through the network exists, taking
into account all technical limitations of the gas network and physical properties of gas.
The mean maximal gas inflow on exits of the network over the whole temperature
range necessary for the nomination validation can be estimated using the presented
models. Detailed elaboration of the nomination validation can be found in Fügenschuh
et al. [2011b]. The inflow on entries, expressed in terms of the technically available
capacities, is assessed from the outflows of the neighboring exits, where additionally
an unfavorable inflow allocation is considered. Here, for instance, one can also use
projection intervals to determine the realistic or projected minimal and maximal flow at
the given exit. These concepts are used for single exits and entries as well as for groups
of exits and entries, which belong together regionally and share the same technical
properties, the so called exit zones. The same type of models and the obtained results
can be applied to the outflow of an exit zone.

Under an appropriate distributional assumption for the error term and the variance
homogeneity, gas operators could also evaluate the flow limits for the given acceptable
level of risk at the given temperature. The mean value as well as the prediction intervals
of the models are the basis for the evaluation of some types of contracts, such as
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freely allocable capacity (FAC) contracts and contracts which arrange the cooperation
on market crossings (CMC). The predicted gas loads at the design temperature are
matched against the booked capacities from the existing contracts, and new contracts
are evaluated according to the relation between the observed loads. Depending on
the type of the exit we are dealing with (e.g. whether the exit is a public utility or an
industrial consumer), a new FAC contract can be entered or a new latent booking is
anticipated. The CMC contracts, and other temperature-dependent contracts can be
also evaluated based on the results of this study.

Finally, we want to mention that the results of this study are used within the ForNe
project supported by OGE. The aim of the project is the analysis and optimization
of gas transmission networks. In particular, we investigate stochastic aspects of gas
transport. Statistical models appear as a natural tool for describing the dependence
of gas outflow and air temperature, and are especially convenient for the prediction.
The predicted gas loads on exits of the network at the design temperature according
to the P-splines model (14) are utilized as input data for the process of the network
optimization, see for e.g. Koch et al. [2011], Martin et al. [2011], Fügenschuh et al.
[2011a], Geissler et al. [2011]. Here, the P-splines approach is chosen because of its
flexibility.

7 Conclusions
We study several models useful for forecasting gas flow on exits of gas transmission
networks based on parametric and semi-parametric statistical modeling techniques.

Preliminary results show that a simple sigmoidal model enables a good starting
approach to the observed problem. The shape of the sigmoidal function we used to
model the dependence of the maximum gas flow from temperature is suitable, but there
is room for improvement. We suggest the BC-model in its simple and extended form
in the parametric setting as it reflects the behavior of gas flow for low temperatures in
a more realistic way. The flexible temperature parameters are also important for the
good model fit, leading us to the extended BC-model, which is the most appropriate
parametric model.

In the case of the semi-parametric approach, we utilize the P-splines, which repre-
sent a very flexible semi-parametric alternative and model gas behavior in an adequate
manner, especially for very low temperatures.

However, we note that non-linear regression models are generally more difficult to
handle than the local smoothers like the P-splines, since we have to take care about
many issues like starting values, (numerical) derivation and convergence properties. In
particular, the extended BC-model is very sensitive both to the choice of initial values
and to numerical derivation. Contrary to them, the P-splines methodology is simpler
and numerically less problematic, but in order to exploit the advantage of flexible
temperature effects one would have to use general additive models (cf. Eilers and Marx
[2002]) or two-dimensional P-splines regression (cf. Eilers and Marx [2003]).
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The forecast of mean gas loads based on parametric models, in our case the BC-
model, is safer than the one relying on the P-splines, due to the numerical properties
of the models.

Both approaches call for a careful choice of the error term distributions, as the
errors of maxima are usually not Gaussian. This issue requires further study and is
beyond the scope of this paper.

The practical use of the predicted mean gas consumption at the design temperature
is highlighted.
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